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ARTICLEINFO ABSTRACT

Keywords: We studied nine pumice fall deposits of the Young Merapi stage (<2.2 ka - 1,788 CE) observed in the western and

Merapi volcano southern flanks of Merapi voleano. All deposits include a wide variation of lithies (10-42% Cy,.), with thicker

ﬁ@ Merapi depaosits (i.e., more voluminous eruption) being more lithic-rich and vice versa. Two different magma types
ice fall deposits

(hereafter referred to as type I and type II) were identified based on petrography, bulk-rock, glass, and feldspar
microlite compositions. Type | magma has abundant amphibole and pyroxene, is rich in calcium (>9 wt%
CaOy), poor in both silica (50.8-53.7 wt% SiOypand 62.3-66.6 witth Si0g..) and strontium (<580 ppm,
bulk-rock), and has more calcic feldspar microlites (Ansg_79). Type Il magma also contains abundant amphibole,
but has less pyroxene and is poorer in calcium (<9 wt% Ca0Oy,), higher in both silica (53.2-54.5 wt% SiOz,p
and 63.3-70.8 wt% 8§i0s4.:) and strontium (=580 ppm), with less calcic feldspar microlites (Ans;_77). These two
magma types alternately fed the explosive eruptions during the Young Merapi stage; however, their juvenile
products are distinctive in terms of syn-eruptive microtextures (i.e., matrix-vesicles and microlites). Pumices
from type Il magma have a higher matrix-vesicle number density (MVND) and microlite number density (MND)
values than those of pumices from type I magma (1.0-6.5 x 10'° and 1.8-7.4 x 10" m> and 0.6-2.3 x 10'°
and 0.7-1.8 » 10'® m 3, respectively). A positive correlation between MVND with 8i0; and MND suggests that a
colder (i.e., less calcic feldspar microlites indicate lower temperature and vice versa) and more evolved (higher
Si03) magma facilitates more extensive matrix-bubble nucleation and deeper microlite crystallization than hotter
magmas, allowing type II magma to erupt more explosively than type I magma.

Vesicle number density
Microlite number density
Magma decompression rate

1. Introduction Innocenti et al., 2013; Gertisser et al., 2023) (Fig. 1), formed by the
northward subduction of the Indo-Australian plate towards the Eurasian

Merapi volcano is one of tlmasaltic—basaltic andesite stratovol- plate, and considered as the youngest member of the Central Java
canoes in Indonesia (Newhall et al., 2000; Gertisser et al., 2012; Quatemary volcanic belt (Phuong et al., 2012). Merapi volcano is also
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known as one of the most active and dangerous volcanoes inmworld understanding the explosive behavior of basalt-basaltic andesite
(Lavigne et al., 2000); not only because it frequently produces block and magmas represents an important challenge since (1) many basalt-
ash pyroclastic density currents (PDCs) via dome collapses (Andreastuti basaltic andesite volcanoes are located adjacent to human settlements
et al., 2@l Kelfoun and Gueugneau, 2022) and aftermath lahars (e.g., Arenal in Costa Rica, Izu-Oshima in Japan, Merapi and Kelud in
(Lavigne etal., 2000; de Beélizal et al., 2013; Hadmoko etal., 2018), but Indonesia, Calbuco in , Mayon in the Philippines; Streck and
also widely dispersed tephra falls from buoyant eruption es with Wacaster, 2006, Ikehata et al., 2010, Gertisser et al., 2012, Maeno etal.,
volcano explosivity indices (VEIs) up to 4 (Andreastuti et al., 2000; 2019, Namur et al., 2020, Ruth and Costa, 2021), and (2) they are
Gertisser et al., 2012; Solikhin et al., 2015). However, our understanding capable of producing VEI 4-5 eruptions, such as Merapi and K in
of the dynamics of pumice fall-associated explosive eruptions at Merapi Indonesia, [zu-Oshima in Japan, and Llama in Chile (Gertisser et al.,
remains limited, as most of the previous studies focused on the aspect of 2012; Maeno etal., 2019; Ikehata et al., 2010; Marshall etal., 2022). To

general-stratigraphic t'raework, storage conditions, lava domes, PDCs, shed light on this issue, we studied nine pumice fall deposits from the
and lahars (Andreastuti et al., 2000, Newhall et al., 2000, Gertisser et al., Young Merapi stage (<2.2 ka - 1,788 CE). Three of them were identified
2012; van der Zwan et al., 2013, Costa et al., 2013; Darmawan et al., as Trayem, Jurangjero 1, and Jurangjero 2 tephras due to the significant

EYA2; Shimomura et al., 2019, Kelfoun and Gueugneau, 2022; Lavigne similarity in deposit characteristics reported by Gertisser et al. (2012).
et al., 2000, de Belizal et al., 2013, Hadmoko et al., 2018). Moreover, Starting from the stratigraphical descriptions of tephra deposits
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Fig. 1. (a) A sketch map showing the location of Merapi volcano in Central Java, Java Island. Red triangles are active volcanoes, while grey area represemamds.
Black solid line with triangles is the subduction zone between Indo-Australia and Eurasia. (b) 10-cm isopach of some VEI 3-4 eruptions of Merapi volcano (Paten [,

Paten II, Trayem, Jurangjero I, Jurangjero I, and 2010 CE) obtained from Gertisser et al., 2012 and Solikhin et al.. 2015, Our sampling locations were focused on the
western flanks because, all of those fall deposits were distributed to west side (towards Magelang City). We visited the southern flank with aim to sample an unnamed
Young Merapi pumice fall deposit (~=20-30 ¢ k) as reported in Gertisser et al. (2011; see their 7¢). Digital elevation model image was obtained from Badan

Informasi Geospasial (BIG) Indonesia 2022, (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)
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observed on the western and southern sides of the Merapi volcano, we
report the quantitative results of componentry, petrography (ie.,
phenocryst fraction, mineral assemblages), vesicles and microlites (i.e.,
volume fraction and number density), as well as the chemical compo-
sitions of bulk-rock, glass, and feldspar phenocrysts and. Petrographic
and chemical analyses were used to evaluate the pre-eruptive magma
storage conditions. Textural studies of vesicles and microlites were used
to support the interpretation of magma storage conditions, as well as to
investigate the syn-eruptive conduit processes.

2. Overview of the Merapi volcano
2.1. Brief history

The activity of Merapi volcano isB.'ided into four main episodes:
Ancient, Middle, Young, and Modern (Berthommier, 1990; Camus et al.,
2000; Gertisser etal., 2012; Gertisser et al., 2023). The Ancient period is
represents Turgo, Plawangan, and Medjing Hills, which are inter-

reted as th flows of the Proto-Merapi volcanic edifice, erupted
een 138 and 135 + 3 ka (Gertisseret al., 2012, 2023) or + 40-14 ka
(Berthommier, 1990; Camus et al., 2000). Since then, activity during the
Middle period took place at the Old Merapi volcanic edifice (Somma-
Merapi; Gertisser et al.,, 2012, 2023), producing subsequent lava flows
(the identified ages are 109 + 60 ka, 30.3 £ 1 ka, 29.4 + 1 ka, 24.2 +
0.8 ka, 10.7 £ 0.8 ka, 8.6 = 1.4 ka, and 48 £ 15
2012, 2023) with some series of pyroclastic fall and pyroclastic density
current (PDC) deposits emplaced during the period of 11,792 4+ 90 to
+ 73 cal. BP (Gertisser et al.,, 2012, 2023) or + 14.0-2.2 ka
(Berthommier, 1990, Camus et al., 2000). The eruptive activity during
the Young and Modern period (<2.2 ka-1,786 d younger than
1,786 CE, respectively; Gertisser et al., 2012, Berthommier, 1990,
Camus et al., 2000) took place from the Young Merapi (post-Somma-
Merapi) volcanic edifice, producing abundant pyroclastic fa PDCs,
lava flows, and/or lava domes with VEI ranging from 1 to 4 (Gertisser
et al.,, 2012; Surono et al., 2012; Cronin et al., 2013; Gertisser et al.,
2023).

Detailed studies on stratigraphy (e.g., Andreastuti et al, 2000;
Newhall et al., 2000; Gertisser et al., 2012, 2023) have revealed that
Merapi volcano experienced multiple modera osive eruptions
(VEI 3-4) with sub-Plinian to Plinian intensity, as indicated by the
presence of abundant pumice and/or scoria fall deposits and PDC layers.
Some of these VEI 3—4 eruptions occurred at <4153 4 37 cal. BP (Paten
1), 2264 + 73 cal. BP (Paten II), 1047 + 37 cal. BP (Trayem), 762 + 26
cal. BP (Jurangjero )RS + 65 cal. BP (Jurangjero II), 1872 CE, and
2010 CE (Andreastuti et al., 2000, Newhall et al., 2000, Gertisser et al.,

2, Surono et al.,, 2012, Cronin et al.,, 2013, Solikhin et al., 2015,
Gertisser et al., 2023) (Fig. 1). However, the 1872 and 2010 CE erup-
11.5 have been associated with PDCs instead of fall deposits (Mewhall
et al., 2000; Surono et al., 2012; Cronin et al., 2013; Solikhin et al.,
2015). Many studies suggest that a large, catastroph ption also
occurred in 1006 CE, with an intensity similar to that of the 1980 CE
eruption of 5t. Helens, and is thus responsible for generating the sector
collapse event of Somma-Merapi (e.g., Van Bemmelen, 1949; Ber-
thommier, 1990; Camus et al., 2000). Gendol Hills in the southwestern
side of Merapi (ca. 18 km from the summit) is therefore suggested to
be the 1006 CE hummocks (i.e., the product of the debris avalanche).
However, Newhall et al. (2000) provide an alternative interpretation:
Gendol Hills represents the remnant of an older volcanic edifice since (1)
a new K—Ar dating from one of the hills suggests a significantly older
age (3.44 + 0.09 Ma); (2) it lacks the characteristics of debris avalanche
deposits such as jigsaw brecciation and block facies/matrix facies re-
lationships; and (3) the lithology of hornblende-pyroxene andesite is
similar to those found in Menoreh Mountains (an ancient volcanic
edifice located +7 km to the west of Gendol Hills).

sertisser et al.,
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Through petrological and geophysical investigations, previous
studies have shown that the magma plumbing system beneath Merapi
volcano is quite complex, containing numerous vertically-distributed

gmatic reservoirs, ranging from 700 MPa to 100 MPa (e.g., Costa
et al., 2013; Chadwick et al., 2013; van der Zwan et al.,, 2013;
Widiyantoro et al., 2018). Specifically, the plumbing system has been
divided into three levels (deep, intermediate, and shallow), where each
reservoir is ted at pressures =600, 500-200, and < 200 MPa,
respectively (Costa et al., 2013; Widiyantoro et al., 2018). In such a
complex plumbing system, two magmati nities of basalt-basaltic
andesite compositions observed: the medium-K and high-K (MK
and HE, respectively) (Gertisser and Keller, 2003; Gertisser et al., 2012,
2023). The Ancient and Middle periods includes both types (MK and
HEK), while the Young and Modern periods are exclusive to HK magma
(Gertisser et al.,, 2023, see their Fig. 6.18). Moreover, the products of
Merapi are typically rich in amphibole, suggesting a hydrous magmatic

m with at least 4-6 wt% of water (Costa et al., 2013; Innocenti
et al., 2013).

2.2, The developed magma plumbing system

3. Methods
3.1. Fieldwork activities and sampling strategies

Fieldwork was conducted for sampling purposes, as well as to record
the essential elements in the observed deposits, including deposit
structure (i.e., massive and/or graded), clast types and sizes, and stra-
tigraphy. We established 4 observation locations on the westem (LOC 1,
2, and 3) and southern (LOC 4) flanks of Merapi volcano (Fig. 1). Most of
the observation locations we tablished on the western flank because
the isopach maps provided by previous studies (i.e., Gertisser et al.,
2012; Solikhin et al., 2015) (Fig. 1) suggested that most pumice fall
deposits were emplaced to the west (Fig. 1). We also visited the southern
flank because we aimed to sample an unnamed Young Merapi pumice
fall deposit { ~20-30 cm-thick) as reported in Gertisser et al. (2011); (see
their Fig. 7c).

Each pumice fall deposit was sampled at a locality about 8-9 km
from the present vent, where the outcrop displays fresh conditions
(Figs. 1 and 2). The studied samples were collected from the main fallout
layer and, if present, from sub-layers (shown as blue star symbol in
Fig. 3) for further laboratory analyses, including grain size distribution
(GSD), componentry, chemical (bulk-rock, glass, and mineral chemistry)
and textural analyses.

3.2, Grain size distribution (GSD) and componentry

A total of 11 samples (including the main fallout layer and, sub-
layers) were used for GSD and componentry analyses, namely F1—P,
F2—P, F3—P, F4—P, Tra-LP, -UP, F5—P, Jj1-P, Jj2-LP, Jj2-UP, and
F6—P (Fig. 4). Samples were dried in an oven at 120 °C for 24 h and
subsequently sieved using -6 to 4@ (=32 to <1/16 mm) mesh sizes
under 1-phi intervals to obtain the distribution of grain size. Compo-
nentry analysis was obtained by observing the size fraction between -6@
and -2 (=32 to 4 mm) under the naked eye (for particles larger than 16
mm) and stereomicroscope (for 4-16 mm particles). We classified the
particles in pumice, scoria, lithics and free crystals based on their
qualitative characteristics, such as colour, shape, brightness, trans-
parency, and/or vesicles (Fiz. 4a).

3.3. Perography

We studied (at most) three thin sections of pumice clasts [depﬁng
on the texture variabilities, i.e., vesicles) from each eruption (F1—P,
F2—P,F3—P, F4—P, Tra, F5—P, Jj1-P, Jj2-P, and F6—P) to qualitatively
observe the mineral textures (e.g., zoning, sieving) and their variations
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Fig. 2. (a) Outcrop image of LOC 1, consisting of five pumice fall layers (F1—P, F2—P, F3—P, F4—P, and Trayem (Tra)). The absence of Paten I and Il deposits (4153
=+ 37 and 2264 = 37 cal. BP, respectively; Gertisser et al., 2012), coupled with the presence of Trayem deposit (1047 = 37 cal. BP; Gertisser et al, 2012) in the
uppermost part strongly suggest that these deposits correspond to the Young Merapi stage. Tra-LP, Tra-GA, Tra-UP, and Tra-RA correspond to Trayem lower pumice,
Trayem grey ash, Trayem upper pumice and Trayem reddish ash, respectively. Detailed image of F1—P (b), F2—P, F3—P (¢), F4—P and Trayem deposits (d). (e, f)
Outerop image of LOC 2, showing the occurrence of F5—P above the Trayem deposit. (g) Detailed image of F5—P and F5-RA layer (pumice and reddish ash,
respectively), showing a relatively darker colour compared to the other observed pumice fall layers. (h) Outcrop image of Jurangerjo I and Jurangjero II pumice fall
deposits (762 = 26 and 385 = 65 cal. BP, respectively; Gertisser et al.. 2012) at LOC 3. Detailed image of Jurangjero I pumice (Jj1-P) and grey ash (Jj1-GA) (i), and
Jurangjero Il lower grey ash (Jj2-LGA), upper pumice (Jj2-UP), and upper grey ash (Jj2-UGA) (j). (k) Outerop image of LOC 4, showing the occurrence of F6—P layer,
which is positioned below black ash (BA) and a 250 = 10 cal. BP charcoal-rich pyroclastic density current (PDC) deposit (Newhall et al., 2000).

(Fig. 5). A mosaic of BSE images (acquired by means of a scanning
electron microscope; Fig. 6) for each thin section was used to quantify
pheno-crystallinity (porphyricity index) and mineral assemblages. We
digitized all phenocryst phases (each mineral phase being represented
by a different colour) using a graphic design software (e.g., Corel Draw,
dobe Illustrator) and processed the resultant images using the software
Image-J to obtain the number and size of the phenocrysts. The vesicle-
free enocryst content (@p) was obtained using the following equa-
tion (e.g., Klug and Cashman, 1994; Gurioli et al., 2005; Suhendro et al.,
2022):

- Prc
Ppe = [ (1)
where ¢pc is the vesicle-included pheno-crystallinity obtained by
dividing the total aréZbf phenocrysts with total grain area, and gy is
the bulk-vesicularity obtained by dividing the total area of vesicles with

total grain area.

3.4. Bulk-rock, glass, and feldspar phenocryst and microlite compositions
Bulk-rock composition was obtained using RIGAKU ZSX Primus II at
the Department of Earth Resource Sc , Akita University. 18 juvenile
samples from 9 pumice fall layers (F1—P, F2—P, F3—P, F4—P, Tra,
F5—P, Jj1-P, Jj2-P, and F6—P) were selected for this analysis (each layer
is represented by 1-3 measurements, depending on the existence of sub-
layer and sample availability) (Fig. 7). The juvenile clasts (grouped for
componentry) were analyzed using glass beads method. First, samples
were powdered using tungsten mill, annealed at 900 “C, and diluted
with 1:5 ratio of rock samples and mixture of lithium borate (LizB40;)
and lithium metaborate (LiBO2). Subsequently, we the powder at
1150 “C to make glass beads. Finally, glass beads were analyzed to
obtain the major and trace element compositions using matrix-corrected
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Fig. 3. Stratigraphy correlation of four different locations. Note that LOC 4 in the south flank include no equivalent layer to those of west flank deposits. However,
according to Newhall et al. (2000), the black ash (BA; older than 250 + 10 cal. BP) layer is only observed at LOCT - Kali Krasak, thus become our key layer to identify

the relative position of F6—P layer with the western flank deposits.

m:rration curves from standard samples of igneous rock series from the
Geological Survey of Japan (GSJ).

The composition of groun s glasses and feldspar phenocrysts and
microlites was obtained using JEOL JXA 8530-F Field Emission Electron
Microprobe (FE-EPMA) at the Faculty of Science, Kyushu University,
using a focused beam with 1 pm diameter size and 15 kV accelerating
voltage (Figs. 7 and 8). For groundmass glasses, each clast is represented
by five to ten measurement locations, avoiding cracks and microlites
(note that the number of measured glasses compositions depends on the
microlite abundance). For phenocrysts, each clast is represented by ten
crystals, and each core and rim composition were represented by the
average anorthite value (obtained from three measurement locations,
avoiding cracks and inclusions). For microlites, we only report the core
compositions (one measurement point for each crystal) because the rim
size was typically smaller than the beam diameter.

3.5. Quantifying vesicles

Many studies have suggested that magmas experienced two stages of
vesiculation, before and during the eruption (named pheno- and matrix-
bubbles, respectively) (e.g., Toramaru, 2014; Edmonds and Woods,
2018; Suhendro et al., 2022). To define the boundary between pheno-
and matrix-vesicles, we performed 2D-vesicle size distribution (VSD)
measurements for each thin section (which were also used for petrog-
raphy analysis and quantification of microlites; see also Sections 3.3 and
3.6.) under three image scales: mosaic (varying from 84 to 212 rnmz),

200x magnification (0.48 rnmz), and 500= magnification (0.09 rnmz)
(Fig. 6). Both vesicle populations (i.e., pheno- and matrix-vesicles) can
experience bubble coalescence process during eruption. Thus, de-
coalescing the vesicle morphology via manual digitatio:lglg a
graphic design software) is essential to capture the most ac lume
fraction and number densities of pheno- and matrix-vesicles (Klug and
Cashman, 1994, 1996). Subsequently, the digitized vesicle images were
processed using image-J software to obtain the number and area of
vesicle. Finally, the number density of pheno- and matrix-vesicles
(PVND and MVND, respectively) were obtained fro . 2 and 3,
assuming homogeneous-spherical vesicles shape (e.g., Klug and Cash-
man, 1994; Gurioli et al., 2005, and Suhendro et al., 2022):

o

(3)

PVND (Ny) = {NAP\")'{DP\"J;;(I _(P;v}
MVND (Ny) = (Nawyv /Dan ) /{1 — @ugye)

where Napy is number density per urlnrea of pheno-vesicle, Dpy is the
average pheno-vesicle size, Nayy is number density per unit area of
matrix-vesicle, Dyy is the average matrix-vesicle size, qgy is phenocryst-
free bulk-vesicularity (i.e., summation of pheno-vesicle and matrix-
vesicle fractions in a whole grain without phenocrysts), and gy, is
matrix-vesicularity (i.e., fraction of matrix-vesicle in the entire clast
groundmass).
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Fig. 4. (a, b) Component variations, grain size distribution (GSD) and componentry results of the Young Merapi pumice fall deposits. Yellow star in GSD chart

represents median size. Yellow, purple, black, and red in pie ch
refers to Gertisser et al. (2012), where pink and green squares

enotes pumice, scoria, lithics, and free crystals, respectively. The voleano explosivity index (VEI)
sent VEI 3 and 4 eruptions, respectively. (¢) Bivariate plots between average lithic contents with

pumice contents (left) and deposit thickness at 8-9- km distance from the vent (right). (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

3.6. Quantifying crystals

Previous studies have suggested that crystals in volcanic rocks can
defined to three phases: microlite, microphenocryst, and phenocryst (e.
g., Hammer et al., 1999; Polacci et al., 2001; Gurioli et al., 2005; Sal-
isbury et al., 2008; Humphreys et al., 2009; Shea et al., 2009; Shea et al.,
2012). Thus, it is important to define their specific size quantitatively via
image processing. Similar to vesicles, we determine the boundary be-
tween each crystal phase by performing size distribution analysis (for
each thin section; Figs. 9 and 10) under three image magnifications, i.e.,
mosaic, 200, and 500x (see previous section). However, because

distinguishing plagioclase and glass in the BSE images was very difficult
due to the lack of colour contrast (Fig. 6), we chose pyroxene as it is
considered as one of the most abundant mineral phases (both as large
and small crystal sizes). Pyroxenes from each magnihtion were
manually digitized using a graphic-design software and processed by
Image-J to obtain the number and size. The results from ImageJ were
exported to CSDslice pr@m to determine the crystal aspect ratio,
following the methods of Morgan and Jerram (2006). The average
aspect ratio of pyroxene crystals was found to be 1.0:1.5:2.5, while the
roundness factor was set at 0.0. Afterwards, the crystal size distribution
(CSD) of pyroxene was determined using CSDcorrections software,
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Fig. 5. (a) Modal mineralogy and petrographic images of the Young Merapi pumice fall deposits. All pumices include plagioclase (Pl), pyroxene (Px), amphibole
(Amp) and oxides (Ox) as the main phenocryst phases. Numbers in the componentry column represents modal abundance of each respective mineral. (b) However,
two types were observed based on the pyroxene abundances: the pyroxene-rich (type I) and the pyroxene-poor (type II). Note that many phenocrysts are fractured. (¢)

Representative BSE images of plagioclase phenocrysts showing three zoning variations: normal, reverse, and oscillatory (OZ). All zoning types often include fine and
coarse sieve-textures. (d) Representative petrographic images of pyroxene showing the occurrence of fine sieve-texture and oscillatory zoning.

following the methods of Higgins (2002). Finally, the microlite number
density (MND) were obtained from equations below:

MND {%I = (N /Dus) 4

where Nay is number density per unit area of microlite, and Dy, is the
average microlite diameter.

4. Results

4.1. Stratigraphy

From the composite stratigraphy of the studied locations, we
observed nine pumice fall deposits from the product of the Young period

(2.2 ka-1,786 CE; hereafter referred as the Young Merapi). Note that
we did not study the 1872 and 2010 CE eruptions because both episodes
correspond to the Modemn period (younger than 1,786 CE).

4.1.1. LOC 1

LOC 1 isa & 180 cm-thick outcrop consisting of 5 pumice fall layers
(F—P) intercalated with a brown layer from PDC (Figs. 2a-d, 3). Starting
from the bottom, the first pumice fall layer (F1—P) is a — 6 cm-thick and
massive, characterized by abundant lithics, and dominated by fine clast
sizes (mostly 0.2-0.4 cm) (Fiz. 2a, b). Going upward, the —9 cm-thick
second pumice fall (F2—P) is massive, with a significant decrease in
lithic portions (lithic-poor) and no remarkable change in clast size
(mostly between 0.2 and 0.4 cm). The third layer (F3—P)isa ~ 12 cm-
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Fig. 6. Representative BSE images of Young Merapi pumice fall samples observed from mosaic, 200, and 500 x, magnifications. Note that type I pumice shows a
relatively more vesiculated (i.e., larger matrix-vesicle size and more extensive coalescence) groundmass with less microlite fraction compared to type II pumice. Mpe

denotes microphenocryst.

thick, massive and lithic-poor pumice fall layer, with typically larger
clast sizes compared to the first and second pumice fall layers (mostly
~2 em) (Fig. 2a, ¢). The fourth pumice fall layer (F4—P) corresponds to
~18 cm-thick massive deposit, with identical clast sizes to F3—P (mostly
~2 cm), and is characterized by the relatively low lithic content with
respect to the previously described pumice fall layers (Figz. 2a, d). Due to
a lack of detailed description from previous studies, whrmot correlate
any of those four layers with the existing data (i.e., Andreastuti et al.,
2000; Newhall et al., 2000; Gertisser et al., 2012). The uppermost layer
at LOC 1is—45 cm-thick and characterized by an internal stratification,
with 4 sub-layers of fall deposits (from the lower to the upper part): a 20
cm-thick lower pumice (LP) lapilli, a 4 cm-thick grey ash (GA), an 11 cm-
thick upper pumice (UP) lapilli, and a 10 cm-thick reddish ash (RA). All
of these sub-layers are considerably lithic-rich (Fig. 2a, d). Due to the
similarity in sedimentological, stratigraphical, and lithological features,
we considered as the equivalent of the Trayem deposit described by
Gertisser et al. (2012); (see their Fig. 11), with an estimated age of 1047
+ 37 cal. BP. Afterward, we named the pumice lapilli sub-units as
Trayem lower pumice fall and Trayem upper pumice fall (Tra-LP and
Tra-UP, respectively) (Fiz. 2a, d), whereas the sub-unit ash layers are
named as Trayem grey ash and Trayem reddish ash (Tra-GA and Tra-RA,
respectively) (Fig. 2a, d).

4.1.2. 1OC 2

LOC 2 is a — 220 cm-thick deposit which consists of 4 observable
pumice fall layers (Figs. 2e, 3). The lowest layer was correlated with
F4—P which was previously described at LOC 1 (Fig. 3); it is a massive,
coarse (dominated by —1.8 cm clasts), and lithic-poor pumice fall layer
(Fig. 2e), with a thickness of ~9 cm. The second fall layer corresponds to
the Trayem deposit (+50 cm), characterized by internal stratification of
four sub-layers (Tra-LP, Tra-GA, Tra-UP, Tra-RA) (Figs. Ze-f, 3). At LOC
2, the thickness of Tra-UP is thinner, and the Tra-RA is significantly
thicker than that observed at LOC 1 (—16 and 20 cm, respectively)
(Figs. 2f, 3). Going upward, there is a — 7 cm-thick lithic-poor and fine-
grained (mostly 0.2-0.4 cm) pumice fall deposit (F5—P), which un-
derlines by a reddish ash layer (F5-RA) (Fiz. Ze, g). Unlike the other
pumice fall layer, F5—P contains scoriaeous juvenile material (Fig. 2g).
The fourth pumice fall layer (the uppermost layer at LOC 2) consists of a
~ 11 cm-thick, massive, coarse (apparently dominated by —3 cm clast
size, but also rich in ~0.4 cm clasts), and lithic-rich pumice fall deposit,
which underlines by a ~ 7-11 cm-thick grey ash layer. Because this
deposit shows significant similarities with the Jurangjero 1 deposit of
Gertisser et al. (2012); (see their Fig. 11), we refer to this layer as
Jurangjero 1 (Jj1-P and Jj1-GA for the pumiceous and grey ash layer,
respectively), dated at 762 + 26 cal. BP (Gertisser et al., 2012) (Fig. 3).
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4.1.3. LOC 3

LOC 3 preserves a relatively thin outcrop (—~55 cm), consisting of two
pumice fall layers (Figs. 2h-j, 3). The first layer (from the bottom) isa —
11 em-thick, massive, coarse (mostly ~1 cm clast size, but also rich in
~0.4 cm clasts), and lithic-rich pumice fall deposit, which underlines by
grey ash layer. This layer is easily correlable to the Jurangjero 1 erup-
tion, which was previously described at LOC 2 (Fig. 3). The second
pumice fall layer shows inner stratification in four sub-layers, including
a lower pumice lapilli and a lower grey ash (which together totalize

10

All pumices displayed bimodal vesicle populations with consistent boundary between pheno- and matrix-vesicles, at approximately 0.1 mm vesicle
es to colour in this figure legend, the reader is referred to the web version of this article.)

<1.5 em of thickness), an upper pumice lapilli (~16 cm) and upper grey
ash (~10cm) (Fig. 2h). All sub-layers include abundant lithic clasts, and
the mode of the grain size distribution is approximately 3 cm in diameter
(Fig. 2j). Such features suggest a lation between this pumice fall
layer with the Jurangjero 2 deposit described by Gertisser et al. (2012),
dated at 385 + 65 cal. BP (see their Fig. 11). Thus, we named the second
layer at LOC 3 as Jurangjero 2, and the sub-layers are labelled as Jj2-LP,
Jj2-LGA, Jj2-UP, and Jj2-UGA, representing Jurangjero 2 lower pumice
lapilli, lower grey ash, upper pumice lapilli and upper grey ash,
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Fig. 10. Pyroxene crystal size distribution (CSD) of the Young Merapi pumice fall deposits. Based on the CSD slope variations (shown as A, B, and C), we define
microlite, microphenoceryst, and phenoecryst as cerystals with <0.03, 0.03-0.15, and > 0.15 mm diameter, respectively.

respectively (Figs. 2 and 3).

4.1.4. LOC 4

LOC 4 is a + 120 cm-thick outcrop that includes a single pumice
lapilli deposit (Fig. 2k and 1). The 30 cm-thick pumice lapilli layer is
massive and rich in fine-grained clasts (mostly 0.2-0.4 cm) and lithics.
Such features make us unable to perform stratigraphic correlation with
deposits at the other studied localities (LOC 1, 2, and 3). To solve this
issue, we consulted the stratigraphy data of Newhall et al. (2000) and
use the overlying black ash (BA) as a stratigraphic marker (Figs. 21 and
3). We suggest that this pumice lapilli deposit corresponds to an un-
named tephra unit at section I-Kali Krasak (Newhall et al., 2000; see
their Fig. 4) due to its relative position to black ash (i.e., the unnamed
tephra is just below the black ash) and similarity in the variation of clast
sizes. Thus, we tend to name this unit as F6—P. Because the overlying
PDC deposits have an estimated age of 250 + 100 cal. BP (Newhall et al.,
2000; see their Figz. 4) and show no correlation with western tephra
deposits (the youngest tephra in the westem flank is Jurangjero 2), we
suggest that the F6—P layer must be younger than 250 + 100 cal. BP,
but older than 385 + 65 cal. BP (Fig. 3).

11

4.2, Componentry variation

The Young Merapi pumice fall deposits comprise four main compo-
nent types: pumice and/or scoria, lithics, and free crystals. Pumice clasts
(brownish grey) are predominantly dense (i.e., low vesicularity); how-
ever, some highly vesicular and moderately vesicular pumices are also
present in all layers (top to upper middle part of Fig. 4a). Unlike pumice,
all scoria clasts are typically black and poorly vesicular (i.e., no occur-
rence of highly and/or moderately vesicular scoria) (Fig. 4b). Most of
the lithics are fresh (grey to black) and displayed porphyritic texture
with abundant phenocrysts (bottom middle part of Fig. 4a). The free
crystals mainly include two mineral types, i.e., plagioclase and pyroxene
(bottom pa:tof. 4a). The componentry data are reported as a number
fraction, where the total number of eﬁomponent type was divided by
the total number of counted grains (e.g., Suhendro et al., 2022; Bunga
Naen et al., 2023). The number fractions are labelled as Cpumices Cscorias
Cties> and Cgpyeq, for pumice, scoria, lithics, and free crystals, respec-
tively (Table 1).

Pumice and lithic clasts are negatively correlated and considered as
the most dominant fraction on all deposits, varying from 50 to 89% for
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Table 1

Componentry result of the Young Merapi pumice fall deposits. C is the number fraction of each component type, obtained by dividing the number of each component
type with the summation of counted clasts for each unit (n / ny).

Number of pumices within each

Number of scoriae

Number of lithics

Number of free crystals within

Total number of clasts (ng,)

Pumice class (mm) within each class (mm) within each class (mm) each class (mm)
Blllayer  ~7 e 816 4 -~ 1632 816 4 = 1632 816 4- > 1632 B16 4
32 8 8 32 8 32 8
12 28 125 _oa_o 0 0o 0 o0 10 94 0 0 0
F1.P 1 (Cpumiee : 156 (60.0) 1 (Coearia): 0 (0) n (Ciiic): 104 (40.0) h..w): 0(0) 260
12 37 246 0o 0 0 0o o0 1 1 51 0 0 0 0
F2.P Total pumice: 286 (84.4) 0 (Coria): 0(0) 1 (Ciie): 53 (15.6) B (Corpra): 0 (0) 339
15 48 348 0o 0 0 o o0 3 ® 71 0 0 0 0
F3-P 1 (Cpumiee : 402 (B1.7) 1 (Gearia): 0(0) n (Ciekie): 90 (18.3) B (Cerpat): 0 (0) 402
4 3 46 92 0 0 0 0o 0 o0 2 s 0 0 0 0
F4-P B (Cppmiee: 148 (89.2) 1 (Coaria): 0 (0) 1 (Ciie ) 18 (10.8) B (Corpa): 0 (0) 166
2 8 46 415 0 0 0 0o 2 2 29 283 0 0O 0 7
TEalP 0 (Cpee): 471 (59.2) 1 (Coaria): 0 (0)  (Cie): 316 (39.8) B (Coppu): 7 (0.8) 794
0o 0 34 208 0 0 0 0o o0 o0 15 229 0 0 0 2
TEAUP 0 (Cpee): 242 (49.6) 1 (Coaria): 0 (0) B (Ciie): 244 (49.6) B (Cop): 2 (0.4) 488
0 3 11 125 0o 0 5 2 0 1 4 0 0 0 0 2
F5-P B (Cpumice : 139 (57.2) 1 (Coaria): 58 (23.9) 1 (Ciie): 45 (18.5) B (Copp): 1 (0.4) 243
16 12 78 0 0 0o o0 1 4 3/ 0 0 0 0
TP 0 (Cpumee): 98 (73.5) bc,m,): 0(0) B (Ciie ) 35 (26.5) B (Corpaa): 0 (0) 133
107 22 216 0o 0 0 0o 0 o0 6 122 0 0 0 4
J2P 0 (Cpuee): 242 (64.7) 1 (Coaria): 0 (0) B (Cye): 128 (34.2) B (Cop): 4 (1.0) 374
3 3 16 149 0 0 0 0o o0 1 6 91 0 0 0 2
JZUP 1 (Cpumer): 171 (63.2) 1 (Gearia): 0(0) n (Ciekie): 98 (36.1) 0 (Cerpiat): 2 (0.7) 271
2 1 40 345 0 0 0 0o 1 0 27 22 0 0 0 14
F6-P B (Cpumice : 398 (59.7) 0 (Ceoria): 0(0) B (Cye): 250 (31.6) B (Coppu): 14 (2.3) 662

1z
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Cpumice and 11 to 50% for Cggic (Fig. 4c). Interestingly, there is the ten-
dency for the thicker deposits to include higher lithic portions than those
of thinner deposits (Fiz. 4c). In particular, lithic portions in deposits
with <20 cm thickness (except F1—P) such as F2—P, F3—P, F4—P,
F5—P, and Jurangjero 1 vary from 11 to 26.5% (Figs. 3 and 4). While the
relatively thick deposits (=20 cm) such as Trayem, Jurangjero 2, and
F6—P comprise higher lithic contents, ranging from 31.6 to 49.6%
(Figs. 3 and 4). Scoria clast is only present in the F5—P, with a relatively
high abundance (Cseria = 23.9%). Free crystals were observed only in
the Trayem, F5—P, Jurangjero 2, and F6—P (specifically below 8 mm
grains); however, their abundance was considerably low (0.4-2.3%)
(Table 1).

4.3. Petrography

A summary of the petrographic observation is listed in Table 2. All
studied pumices include plagioclase (Pl), pyroxene (Px), amphibole
{Amp), and oxides (Ox) as the main phenocryst phases. Biotite (Bt) and
apatite (Ap) were also observed, but their relative abundances are lower
than 0.5% (Fiz. 5a, b). Plagioclase and pyroxene phenocrysts from all

Table 2
Summary of petrography of the Young Merapi pumice fall deposits.
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samples were predominantly zoned (including normal, reverse, and
oscillatory zoning textures), sieved (coarse and fine), and fractured
(especially for larger phenocrysts) (Fig. Sb, c). By contrast, amphibole,
biotite, oxides, and apatite phenocrysts displayed un-zoned texture with
minimum fractures (Figz. 5b). Based on the relative abundance of py-
roxene, we suggested two different types of pumice: the pyroxene-rich
(type I, where the relative abundance of pyroxene reached >15%) and
the pyroxene-poor (type II, where the relative abundance of pyroxene is
=15%]) (Fig. 5a). Type [ was found exclusively in F1—P, F2—P, F3—P,
F5—P, and F6—P layers, while Type II characterizes F4—P, Trayem,
Jurangjero 1, and Jurangjero 2 layers (Fig. Sa).

Crystals in the groundmass glass (including microlite and micro-
phenocryst) consist of three mineral phases: plagioclase, pyroxene, and
oxides (Fig. 6). Both plagioclase and pyroxene displayed zoned (normal
and reverse) and un-zoned textures, while oxides were typically un-
zoned. Unlike phenocrysts, no sieved and oscillatory zoning textures
were observed in the groundmass crystals (Fig. 6).

Pumice FPheno-  Textures Vesicle-free pheno- Maodal mineralogy
fall layer crysts (O: present, X: absent) crystallinity (yp) (%)
phase Un- Normally Reversely Oscillatory Sieved Frac-
zoned  zoned zoned zoned (Coarse and tured
fine)
F1-F Fl o] o] o] o] 0.250 63.44
Px h o é o o X 0.135 29.54
Amp o] X X X X X 0.025 5.26
Ox o] X X X X X 0.008 176
All 0.459 100.00
F2-F Fl o] o] o] o o] 0.244 57.82
Px o] o] o] o o] o] 0.101 23.63
Amp o] X X X X o] 0.062 14.69
Ox o] X X X X X 0.015 355
All 0.422 100.00
F3-F Fl o] o] o o] 0.270 60.43
Px b o o o 0 X 0.102 22.87
Amp o] X X X X X 0.045 10.02
Ox o] X X X X X 0.029 6.68
All 0.445 100.00
F4-P Fl o] o o] o] o] o] 0.329 68.40
Px o] o o] o] o] o] 0.051 10.60
Amp o X X X X X 0.074 15.39
Ox o] X X X X X 0.027 561
All 0.481 100.00
Trayem Fl o o o o 0.303 66.02
(Tra-LP and Tra-  Px h o] o] o o] o] 0.041 B9E
UF) Amp o] X X X X o] 0.085 18.45
Ox o] X X X X X 0.030 6.55
All 0.459 100.00
F5-P Pl o o o o o o 0.291 72.57
Px o] o] o] o] o] X 0.071 17.69
Amp o] X X X X X 0.021 531
& o] X X X X X 0.018 4.43
0.445 100.00
Jurangjero Pl o o o o o 0.333 75.67
1 Px o o o o o o 0.034 7.77
(Jj1-F) Amp o X X X X o] 0.054 12.16
Ox o] X X X X X 0.019 4.39
All 0.440 100.00
Jurangjero 11 Fl o o o o] o] 0.278 57.16
(Jj2LP and Jj2-  Px E o o o o o 0.060 12.45
UF) Amp o X X X X o] 0.124 25.63
ox o X X X X 0.023 476
All é 0.485 100.00
Fo-P Fl o o] o] o o o] 0.255 57.56
Px o o] o] o o o] 0.089 20.09
Amp o X X X X X 0.078 17.61
ox o X X X X X 0.021 474
All 0.443 100.00
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Table 3

Bulk-rock chemical analysis of Young Merapi pumice samples. All samples are in wt% and normalized to 100% (volatile-free).

Sample: F1-P F1-P F2-p F2-P F2-p F3-P F4-P Tra-LP Tra-LP Tra-UP
Pumice Pumice Pumice Pumice Pumice Pumice Pumice Pumice Pumice Pumice
5i0y 5166 51.28 50.67 53.86 50.66 52.20 53.86 5379 53.26 54.42
i 0.91 0.89 0.99 0.83 0.98 0.92 0.77 0.79 0.75 0.77
aa 2019 21.44 20,69 19.05 20.33 19.65 19.17 149.52 19.67 18.80
MnO 0.21 0.19 0.19 0.20 0.20 0.19 0.20 0.19 0.20 0.19
MgO 3.08 278 3.26 273 3.48 3.30 2.89 277 3.00 298
Ca0 9.48 9.23 9.56 B.59 9.67 9.24 891 8.71 B.99 B77
Na,O 299 292 282 3.48 2.87 3.04 3.26 3.28 3.15 3.31
K0 1.69 160 1.55 2.31 1.56 1.87 207 2.02 191 213
PaOg 0.31 0.37 0.29 0.26 0.26 0.26 0.29 0.31 0.32 0.28
Feqlq 9.48 9.32 9.98 B.69 9.99 9.31 B.59 B.60 B.74 B.32
Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
ppm
v 201 271 428 a7 476 254 296 267 252 236
Cr 1z 14 11 1z 9 15 14 10 11 21
Ni 11 13 B 15 2 6 4 10 6 16
Eb 35 31 30 48 30 36 46 46 42 49
Sr 581 586 563 562 555 562 609 590 589 589
i 20 20 21 21 20 21 21 20 20 20
Zr 111 119 115 104 113 107 112 117 121 111
Nb o 5 o 7 o 1 4 4 1 4
Ba 313 356 395 593 470 392 503 468 482 350
Sample: F5-P F5-P F5-P Jj1-P Jj1-P Jj2-LP Jj2-up F&-P
Scoria Pumice Pumice Pumice Pumice Pumice Pumice Pumice
5i0y 5141 52.89 53.05 53.6 53.36 54.62 54.49 51.96
i 0.95 0.86 0.84 0.77 0.81 0.71 0.74 0.82
Eq 18.00 18.95 1892 1892 19.61 19.43 19.14 21.71
MnO 0.23 0.22 0.21 0.20 0.20 0.20 0.20 0.19
MgO 4.14 3.21 3.06 299 2.89 2.60 268 245
Ca0 9.63 9.38 9.28 B8.91 B.87 B.46 B73 9.18
NayO 298 3.15 299 3.24 3.18 3.33 3.38 3.09
K0 1.97 1.94 1.70 2.05 1.96 217 218 164
PaOsg 0.31 0.29 0.31 0.31 0.32 0.30 0.29 0.33
Feqlq 10.37 9.09 9.49 B.73 B.78 B.18 B.17 Bl
Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
ppm
v 297 151 156 329 374 352 236 236
Cr 21 11 10 10 10 11 7 13
Ni 9 3 15 10 6 B 4 7
Eb 40 39 40 44 45 51 48 a5
Sr 557 565 556 580 609 609 610 625
i 20 22 21 21 20 20 22 21
Zr 104 109 111 113 117 117 111 123
Nb 15 B 5 3 7 6 4 1
Ba 293 396 282 487 445 617 507 76

by the high-K (HK) and low chromium (Cr) characteristics of bulk-rock
chemical composition (Fig. 7a, b). Interestingly, type I also shows a
distinctive bulk-rock and glass chemical pattern compared to Type II,
specifically for silica, calcium, and strontium contents (Fiz. 7c-e). In
Sample: Type I pumice Type Il pumice particular, type I is classitied as basalt to basaltic andesite (50.5-53.7 wt

Table 4
Average groundmass glass chemical compositions of type [ and type II pumices.
All samples are in wit% and normalized to 100%.

(n =25 (n =39 % Si0y i) with andesitic-dacitic glass (62.3-66.6 Wt% SiOzgs), richin
8i0: 64.31(+2.23) 67.01 (+7.13) calcium (=9 wt% CaOpyy) and poor in strontium (<580 ppm Sryug).
EOSQ i‘;f?f?if’ﬁ;, ‘1’:39 (T:-B"; L While type II is classified as basaltic andesite (53.2-54.5 Wt% SiOap,.),
k;.o 0.20 (io_d“ 014 (io_d“ having dacitic glass compositions (63.3-70.8 wt% SiO4 ) with poor
MgO 1.28 (+0.12) 0.74 (+0.20) calcium (<9 wt% CaOpyy) and abundant strontium (=580 ppm Srhug).
Ca0 3.69 (£1.04) 347 (£2.04) Most pumice fall layer is characterized by the homogeneous bulk-rock
ﬁaéo 3':{1, Eigx; 3.3{1) Eiéi; composition (i.e., <1 wt% difference in SiOp,, between each

a . ) ’ . S -
FeOtot. 4,39 (40.71) 2,80 (40.67) analyzed sample), except for F2—P and F5—P (Table 3). Both F2—P And
Total 100.00 100.00 F5—P show bimodal juvenile composition, that is, basalt and basaltic

andesite. F2—P has the largest 5i0gp,, interval, i.e., >3 wt% difference
in silica between basalt (50.66-50.67 wt% SiOa,,) and basaltic
andesite (53.86 wt% SiOapui). F5—P has a namrower SiOspy interval

than that of F2—P (~1.5 wt%); such variation was found to be related to

The representative bulk-rocks and glasses compositions are listed in the juvenile type, that is, scoria (51.41 wt% SiOzpu) and pumice
Tables 3 and 4, respectively. We confirm that our samples belong to the (52.81-53.05 Wt% SiOasu) (Fig. 7a).

Young Merapi stage (<2.2 ka-1,786 CE; Gertisser et al., 2012}, as shown

4.4. Bulk-rock, glass, and feldspar phenocryst and microlite compositions

There is no remarkable difference in terms of feldspar phenocryst

14




L Suhendro et al.

core composition between type [ and 11, as shown by the overlapping
anorthite contents ((An = Ca/(Ca+ Na+ K; Anss gy for type [ and
Anspgs for type II) (Fig. 8). In contrast, feldspar phenocryst rim and
microlite compositions show distinct differences, with type I being more
calcic than type II (Angg go and Angg 7 for Type I, and Angy g; and
Angy_zg for Type IT) (Fig. 8).

4.5. Definition of vesicles and crystals

The VSDs dataaowed that all pumices displayed bimodal vesicle
populations, with the boundary between pheno- and matrix-vesicles
occur at approximately 0.1 mm vesicle diameter (Figz. 9), similar to
those of 5t. Helens, er Lake (Mazama), Novarupta, Santorini, Man-
injau pumices (e.g., Klug and Cashman, 1994; Klug et al., 2002; Adams
et al., 2006; Simmons et al., 2017; Suhendro et al., 2022).

hree slope variations were observed in pyroxene CSD data, both for
type [ and type II pumices (Fig. 10). The first slope (A) represents the
steepest slope variation, ranging from —716 to —806. The second slope
(B) is characterized by a relatively medium value, varying from —165 to
—365. While the third slope (C) represents the gentlest slope, ranging
from —6.3 to —5.1. Based on such slope characterizations, we define
microlites, microphenocrysts, and phenocrysts as those crystals with
=0.03, 0.03-0.15, and > 0.15 mm diameter, respectively (Fig. 10). Such
crystal definitions are similar ose defined at Vesuvius, Lassen Peak,
Unzen, Pinatubo, and Rabaul (e.g., Gurioli et al., 2005; Shea et al., 2009;
Shea et al., 2012; Salisbury et al., 2008; Cichy et al., 2011; Hammer
etal., 1999; Bernard and de Maisonneuve, 2020). Moreover, it is known
that microphenocryst can be attributed to two different origins: (1) pre-
eruptive crystallization via slow depressurization (just before the erup-
tion; Shea et al., 2009), and (2) fragmented or broken phenocrysts
(Pallister et al., 1996; van Zalinge et al., 2018). Therefore, to avoid such
ambiguity, we neglect the discussion on microphenocryst; instead, we
tend to focus on phenocryst and microlite.

4.6. Correlation of textural properties

Comparison of the representative BSE images of type [ and I pumices
are shown in Fig. 11. Type l and Il pumices are considerably phenocryst-
rich; however, Type I is found to be slightly less crystalline than type II
(0.42-0.45 ¢ and 0.43-0.49 qp., respectively). Vesicle-free pheno-

Table 5
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crystallinity is found to be negatively and positively correlated with
bulk-vesicularity (pg) and SiOgpu, respectively (Fig. 11a, b). Type I
pumice has a higher range of both bulk- and matrix-vesicularity than
Type Il pumice (0.48-0.57 and 0.58-0.65, and 0.37-0.45 and 0.45-0.50,
respectively) (Fig. 9¢-f). For typel, the MVND vary from 0.6 = 10°m~?
to 2.3 x 10" m™ 2, and the MND range from 0.7 = 10 m? to 1.8 x
10" m~?, with 0.01-0.02 microlite crystallinity (g, ie., fraction of
microlites in the groundmass glass). For type II, the MVND vary from
1.0 x 10 m 2 to 6.5 x 10" m~ %, and the MND range from 1.8 x 10®
m? to 7.4 x 10" m~?, with 0.03-0.07 ¢y,.. The MVND is negatively
correlated with matrix-vesicularity (Fig. 11c), resulting in positive cor-
relation with Si0a,; (Fig. 11d), whereas the MND shows positive cor-
relation with microlite crystallinity (¢y,) and $iOap,, (Fig. 11e, f). Since
both MVND and MND are positively correlated with bulk-rock silica
content, MVND yield a positive correlation with MND (Fig. 11g). Both
pumice types have nearly identical PVND values (1.0-3.1 x 10'" m?,
with PVND showing no correlation with MVND (as well as MND)
(Fig. 11h). Noteworthy, we also found that CaOgg;s of both pumice types
exhibit negative correlation with gp-. A summary of the textural pa-
rameters is listed in Table 5.

5. Discussion
5.1. Magmatic origins and pre-eruptive conditions of type I and II pumices

One indication of a similar magmatic source (co-magmatic origin) is
the linear correlation (i.e., single trend) between all major and trace
elements, s those observed in the 90 ka eruption of Aso, the 39 ka
eruption of Campi Flegrei, the eruption of Laacher See, and the
1815 CE eruption of Tambora (e.g., Kancko et al., 2007; Forni et al.,
2016; Ginibre et al., 2004; Suhendro et al., 2021). However, in this
Young Merapi case, we found two different bulk-rock geochemical
trends (particularly between silica, magnesium, calcium, and strontium)
(Fig. 7¢, d) as well as two distinct phase assemblages, with type [ and 11
pumice being pyroxene-rich and pyroxene-poor, respectively (Fig. Sa).
Despite the difference, both pumice s have a relatively similar
amphibole fractions and feldspar phenoﬁt rim compositions (the most
evolved composition reached Angg sg). This suggest that both pumice
types were sourced from different magmatic reservoirs with different
crystallization histories, but stored at relatively similar water contents

Textural parameter of the Young Merapi pumice samples. @gy. @pcs @pys P Pagy and gy correspond to buIk-vesim]arirahenn-crystallinily, pheno-vesicularirty,
high magnification (500x) matrix-vesicularity, entire clast matrix-vesicularity, and microlite crystallinity, respectively. The superscript “*" indicates phenoeryst-

free vesicularity, while the superseript “o" represents vesicle-free crystallinity. D indicates average di , while Nv repr number density for each given
parameter.
Location, unit, pumice type Py e Pheno-vesicle Matrix-vesicle Microlite
(ip ) (ippe) Dy e }an Dy [y [T, MVND. Dy Page MND.
(mm) (mm) N, (mm) N,
(m ™) m (m )
FL-F 0.50 (0.65) 0.23 018 0.32 3.1 % 10 0.006 0.58 0.37 0.6 x 10'% 0.002 0.01 0.7 « 10
e 1) (0.46)
FZﬁ 0.51 0.21 0.22 0.23 1.9 %10 0009 059 0.42 1.8 x 10" 0.002 0.02 1.7 x 10"
(Type I) (0.64) (0.42)
F3-P 0.45 0.29 0.21 0.10 1.2 x 10 0.009 0.58 0.42 2.1 x 10'% 0.002 0.02 1.8 x 10'%
(Type I) (0.59) (0.48)
F5-P 0.57 0.19 0.26 0.23 1.5 x 10 0.008 0.67 0.49 1.4 x 10 0.002 0.01 0.7 x 10"
(Type I) (0.70) (0.44)
F6-P 0.55 0.20 0.23 0.25 2.1 x 10" 0.010 0.65 0.47 2.3 x 10'% 0.003 0.02 0.9 x 10"
(Type I) (0.69) (0.44)
F4-P 0.38 0.29 0.26 0.16 1.2 x 10 0.009 0.49 0.32 1.0 x 10'% 0.002 0.05 4.8 x 10'%
(Type 1) (0.54) (0.48)
Trayem 0.37 0.29 0.25 0.15 1.3 » 10" 0.006 0.47 0.31 5.1 x 10'% 0.002 0.07 7.4 % 10
(Type INEL (0.52) (0.46)
Jurangjero I 0.45 0.27 022 0.16 1.7 » 10" 0.007 0.49 033 1.8 » 10'% 0.003 0.04 1.9 » 10'%
(Type 1D (0.54) (0.44)
Jurangjero 11 0.43 0.27 019 0.23 2.4 % 10' 0.005 0.54 0.31 6.5 x 10'% 0.002 0.03 2.2 x 10"

(Type I1) (0.59) (0.49)
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high-Ca, low-5r, low-Si
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Clithic=27-50%

Type Il pumice
(higher MVND and MND)

Jj2,)j1, Trayem, F4-P

More viscous,
smaller bubbles

Less viscous,
larger bubbles

Eruption of
type ll magma

, Deeper microlite
c rystallization

(pyroxene >15 %) (pyroxene <15 %) crystallization Ll L | awer 5nd 1
higher temperature lowertemperature 2" nuclea
.l....ll' .l..'.l L2 0 L el L
'l.|':n' ll..':ul 'l‘.l:n.
PC = 0.42-0.44 °PC = 0.43-0.49

Similar PVND = ~1x101°m-3
Deeper magma reservoir
(not shown here)

B Plagicclase [l Amphibole (O Bubble [l Microlite
W Pyroxene

[ Oxides Hotter NN Colder

Fig. 12. Illustration showing the dynamics of pre- and syn-eruptive conditions of the Young Merapi pumice eruptions. The relatively similar bulk-rock composition,
coupled with the relatively similar amphibole content and PVNDs value may suggest that type I and II magmas were stored at relatively similar pressure (depth).
When eruption occurs, the cold-more evolved type Il magma will experience more extensive matrix-bubble nucleation and deeper microlite crystallization than the
hot-less evolved type I magma. As the MVND and MND increase, magma decompression rate and viscosity increase, allowing type Il magma to erupt more explosively

than type I (i.e., higher eruption plume and more dispersed fall area).
31

(~4-6 wt) and storage pressure (~200 MPa) (Costa et al, 2013;
Innocenti et al., 2013) (hereafter referred as to type ] magma and type II
magma, respectively) (Fig. 12). In particular, although type [ includes
significantly higher modal abundance of pyroxene (Figz. 5a), the glass
composition of silica and calcium remains slightly lower and higher than
type 11, respectively (Fig. 7e). Since magmatic differentiation (repre-
sented by the in ing trend of silica content or decreasing magnesium
in residual melt; e.g., Tumner et al., 2003, Handley et al., 2007} is a result
of crystallization of mafic minerals in a cooling magma (McBimey,
2007), we can expect that the starting composition of type | magma must
be more primitive (i.e., lower 5i0z and higher Ca0O) than type I magma,
thus facilitating more extensive pyroxene crystallization with less
plagioclase (i.e., higher pyroxene fractionation reduces the modal
abundance of plagioclase; Fig. 5a) (Handley et al., 2007). Finally,
because pyroxene is one of primary silicate minerals that includes
abundant calcium and/or magnesium (McBirney, 2007), and strontium
can substitute for calcium during the crystallization of calcic plagioclase
(Cherniak and Watson, 1994), the bulk-rock composition of type I yields
higher calcium (CaOy,,; ) and magnesium (Mg0, ), and lower strontium
(Sreup) contents compared to type I (Fig. 7¢).

Phenocryst rim and microlite composition record late-stage crystal-
lization in magmas, hence their compositions reflect the final physio-
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chemical conditions of magma prior to eruption (Hammer et al., 1999;
Toramaru, 2019; Suhendro et al, 2021). Therefore, because type [
pumice include a slightly more calcic feldspar rim and microlite com-
positions than type I pumice, and higher magmatic temperatures result
in more anorthitic feldspars (Couch et al., 2003), we suggest that type [
magma was hotter than type Il magma (Fig. 8). This supports our idea
that type | pumice originates from a more primitive magmatic source
than type Il pumice, and shows good agreement with the general idea
that a lower 5i0, magma corresponds to a higher magma temperature
and vice versa (Toramaru, 2006; Ridolfi and Renzulli, 2012), with type [
being slightly less evolved than type II (50.5-53.7 wt% Si0ap,, and
53.2-54.5 wt% Si0g ., respectively) (Fig. 7). Moreover, the fact that
type II pumice include slightly more abundant pheno-crystallinity than
typel (Fig. 11a, b) imply that type Il magma experienced more extensive
cooling process, which led to more significant phenocryst crystalliza-
tion. Thus, we suggest that type [ and II magmas had similar rate of
overpressures prior to eruption, as indicated by PVND values (Fiz. 11h).
Such PVNDs are similar to the other VEI 3-5 eruptions that did not form
calderas (£1.0 x 10" m~?), but significantly lower than the VEI 6-8
caldera-forming eruptions (+1.0 x 10! m~3) (Suhendro et al., 2022,
Suhendro and Toramaru in prep.).

Finally, the fact that both pumice types have abundant
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disequilibrium textures (i.e., finely sieved and reversely and oscillatory
zoned; Fig. 5b-d) in plagioclase and pyroxene phenocrysts suggests that
both type I and II magma experienced ﬂlbstantial magmatic
recharge-mixing event from the deeper s , where the injection of a
hotter and less evolved magma results in partial dissolution of the pre-
existing crystal surfaces and crystallization of more mafic crystal layer
(i.e., higher Ca/Mg/Fe) and vice versa (de Silva et al., 2008; Renjith,
2014). The fact that F2—P and F5—P layer has bimodal bulk-rock
compositions (Fig. 7) may suggest both eruptions occurred just after
the injection (i.e., magma mingling), without experiencing any magma
hybridization. While the remaining layers (F1—P, F3—P, F4—P,
Trayem, Jurangjero 1, Jurangjero 2, and F6—P) may have experienced
magma hybridization prior to eruption, yielding the relatively homo-
eneous bulk-rock composiion (Fig. 7). This magma recharge-
bridization is a common feature that triggers some of well-known
sub-Plinian/Plinian eruptions, such as the 12 ka eruption of Popo-
catépetl (Malinche Pumice II stage), the <5 ka eruption of Agnano-
Monte Spina, the 2000 cal. BP eruption of El Misti, the 550 cal. BP
eruption of El Chichon, the 1875 CE eruption of Askja, e 1471,
1779, and 1914 CE eruptions of Sakurajima (Mangler et al, 2020,
Espincsa et al., 2021; Pelullo et al., 2022; Tepley et al., 2013; Macias
et al., 2003, Andrews et al., 2008; Sigurdsson and Sparks, 1981; Araje¥d
et al., 2019). Moreover, this implies that such a complex architecture of
the magma plumbing system at Merapi (i.e., consisting of numerous
vertical ly-distribut d connected magmatic reservoirs between 700
and 100 MPa; Costa et al., 2013, Chadwick et al., 2013, van der Zwan
etal., 2013, Widiyantoro et al., 2018) has been established at least since
the Young Merapi stage.

5.2, The role of silica and temperature

Magmas decompress during eruption, resulting in vesiculation
(mainly of H,0) and crystallization, forming matrix-bub and
microlites. Under the assumption of homogeneous nucleation, the cor-

ion between MVND and MND should be theoretically positive
(Toramaru, 2006; Toramaru et al., 2008). Here, we confirm that the
positive correlation between MVND and MND is observed in this Young
Merapi case (Fig. 11g), with both parameters having strong dependance
on silica content (Fig. 11d, f).

It is known that higher 5i02 magma tend to have low difﬁlies and
high surface tensions because of the high magma viscosity (Zhang and
Behrens, 2000, Behrens et al., 2004, Toramaru, 2006, Takeuchi, 2011,
Mishiwaki and Toramaru, 2019). Such conditions allow evolved magmas
to experience a more extensive matrix-bubble nucleation (via second
nucleation) during eruption, as well as inhibiting bubble expansion and
coalescence during magma ascent (Toramaru, 2006) (Fig. 12). With
those considerations, it is natural that the eruption of more silicic type II
magma yielded pumice with higher MVNDs than pumice from type [
magma (Fig. 11). Moreover, because the cooling of the magma would
have resulted in crystallization and differentiation (see Section 6.1.),
and colder magma facilitates larger degree of supercooling, microlite
crystallization is expected to occur at higher and lower pressure condi-
tion for type Il and type | magma, respectively (Fig. 12). This process
allowed type II magma to experience deeper and more extensive
microlite crystallization than type [, yielding a microlite-rich pumice for
type II and microlite-poor pumice for type 1. Because pyroxene and
plagioclase were observed as two of the most abundant microlite phases
(Fig. 6], and the crystallization of both minerals consumes calcium in the
melt, the more extensive microlite crystallization plays a role for the
more significant decrease of CaOyyg,, such as those observed in F4—P
and Trayem samples (Fig. 11i).

Finally, since MVND is a function of magma decompression rate
(Toramaru, 2006), it is expected that type Il magma experienced faster
ascent rate than type | magma. To be quantitative, by assuming homo-
geneous nucleation with conditions of 5 wt% H20, 200 MPa
initial saturation pressure (Costa et al., 2013, Innocenti et al., 2013; see
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Section 5.1.), and 0.07 N/m surface tension [Eal surface tension for
andesitic melts; Gardner et al., 2013), magma decompression rates vary
from 5.3 to 12.4 MPa/s for type I and 5.5-19.3 MPa/s for type II,
equivalent to that of the 2008 CE sub-Plinian eruption of Chaitén in
Chile (12.1 £+ 4.3 MPa/s; Alfano et al., 2012). This may be the reason
why type II magma produced thicker deposits (Fig. 2) than type [
magma; higher magma decompression rate yields higher eruption
plume, yielding a larger dispersal area (Toramaru, 2006; Bonadonna
and Costa, 2013). In addition, the fact that many plagioclase and py-
roxene phenocrysts are fractured and coarsely sieved (both for type land
I pumice; Fig. 5b-d) also supports the idea of high magma decompres-
sion rates (Nelson and Montana, 1992; Viccaro et al.,, 2010; Renjith,
2014; van Zalinge et al., 2018). Nevertheless, some studies have shown
that the MVND-decompression rate meter always yields a significantly
higher ascent rate (up to two to three orders of magnitude difference)
compared to the other methods such as the microlite textures, melt
ayment, broken crystals, and amphibole breakdown rims (e.g.,
Shea, 2017; Cassidy et al., 2018). Thus, to be fair, we have to address
that our estimation on the magma decompression rate es using
MVND may be overestimated. Moreover, decompressing magma from
the reservoir (200 MPa) to the surface at 5-19 MPa/s indicates a magma
ascent velocity of 200-760 m/s; this suggest that the magma ascended
from the reservoir towards the surface just within 11-40 s, which is
extremely fast. This discrepancy occurs because: (1) the MVND may only
record the final decompression stage, not the entire decompression path,
and (2) the decompression rate can be non-linear, thus may accelerate as
the magma as@pds (Mastin and Ghiorso, 2000, Mastin, 2002, Nowak
et al., 2011). Further examination is strongly needed to solve these
problems and will be out of the scope of this paper.

5.3. The importance of preexisting lava dome for generating explosive
sub-Plinian,/Plinian eruptions: Insights from componentry

It is known that the presence of a lava dome can lead to gas accu-
mulation (i.e., overpressure) in the @hduit (Woods, 1995; Sparks, 1997;
Sigurdsson, 2000). Consequently, when the overpressure exceeds the
strength of the dome, an eruption occurs, causing a sudden decom-
pression that facilitates substantial gas exsolution from magma. This is
the reason why numerous mild (VEI 3-5) sub-Plinian/Plinian eruptions
were preceded by dome formation (at least few years before the explo-
sive evel ch as the 2008 CE eruption of Chaiten (1 and 4 layer),

CE eruption of Merapi, and 2014 CE eruption of Kelud (Alfano
etal., 2011, 2012; Surono etal., 2012; Cronin et al., 2013; Jeftery et al.,
2013; Maeno et al, 2019). As a result, this kind of eruptive style
generally yields abun umice clasts with substantial amount of
lithies (15-50% Cpuic) (€.8., Maeno et al., 2019, Miiller et al., 2022 )
(Fig. 13). For comparison, another mild sub-Plinian/Plinian eruptions
with no initial dome formation produces a characteristically lithic-poor
deposits (< 10% Cighi, with a predominantly <5% Clig ), such as the 60
ka Fontana Lapilli eruption, 640 CE Newberry eruption (the “Big
Obsidian Flow™), 1886 CE Tarawera eruption, 1914-15 CE Sakurajima
eruption (“Taisil), 1986 CE [zu-Oshima eruption, and 2015 CE Cal-
buco eruption (Costantini et al., 2010; Trafton and Giachetti, 2022;
Walker etal., 1984; Todde et al., 2017; Sumner, 1998; Castruccio etal.,
2016) (Fig. 13). In addition, a Vulcanian eruption (mostly VEI <3) is
characterized bydomination of lithics instead of juvenile clasts (up
to ~90% Cpic; €.8., Alfano et al., 2011, 2012, Maeno et al., 2023)
(Fig. 13).

In this study, we found that all Young Merapi pumice fall deposits
include substantial amount of volcanic lithics (11-50% Clgye ) (Fig. 13).
Note that such lithic variations are not typical in dome-free sub-Plinian/
Plinian and Vulcanian eruptions as mentioned above. Moreover, the fact
that most lithics displayed fresh condition with abundant phenocryst
contents (Fig. 4a) strongly suggest that these lithics were originated
from the preexisting lava dome (i.e., lava domes in intermediate system
were typically phenocrystrich; e.g., Murase et al., 1985, Yokoyama,
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Fig. 13. Comparison on lithic contents among some famous VEI 3-5 eruptions worldwide. Sub-Plinian/Plinian eruptions without initial dome formation (dome-free)
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lithies, varying from =10 to 50% Cyye. While vuleanian eruptions are characterized by the domination lithics instead the juvenile (up to ~90% Crp.).

2005, Jeffery etal., 2013). Thus, we suggest that all pumice fall deposits
during the Yougel/Merapi phase always initiated by dome formation,
similar t t of the Modern Merapi case (e.g., the 1872 and 2010 CE
eruption; Gertisser et al., 2012, Surono et al., 2012, Cronin et al., 2013).
This is significant because the explosive behavior (sub-Plinian/Plinian)
at Merapi have been constant (at least) during the past —2 ka years. In
addition, in the case of sub-Plinian/Plinian eruptions, it is clear that
thicker deposits (i.e., more voluminous eruption) typically produces
more abundant lithics than that the thinner ones (Fig. 4c). Thus, we
suggest that a larger eruption intensity (i.e., more explosive eruption;
higher MVND) yields more significant dome destruction and wall-rock
erosion (Sable et al., 2006; Shea et al., 2012).

5.4. Comparison to the other basalt-basaltic andesite sub-Plinian/Plinian
eruptions

Previously, mafic magmas (basalt-basaltic andesite bulk-rock com-
positions) were underestimated for their capability to produce explosive
eruptions due to their low viscosities (<10* Pa s; Takeuchi, 2011).
However, recent studies have revealed that such mafic magma compo-
sitions are capable to produce explosive eruptions with sub-Plinian or
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Plinian integty {with VEIs ranging from 3 to 5), such as the 60 ka
eruption of Fontana Lapilli, the 122 BCE eruption of Etna, the 1886 CE
eruption of Tarawera, the 1986 CE eruption of lzu-Oshima, the 1990 CE

014 CE eruptions of Kelud, and the undated eruption of Kukusan
(Costantini et al., 2010; Sable et al., 2006; Walker et al., 1984; Ikehata
et al., 2010; Bourdier et al., 1997, Maeno et al., 2019; Mitsuoka et al.,
2021). Merapi is not an exception, as most of its explosi ducts (i.e.,
pumice and/or scoria) are basalt and basaltic andesite (Gertisser et al.,
2012; Costa et al., 2013).

The reason why Young Merapi is able to achieve sub-Plinian and/or
Plinian intensity and attained the highest MVNDs value among all re-
ported mafic explosive erupbns (e.g., Fontana Lapilli, Etna, Tarawera,
[zu-Oshima, and Kukusan; Costantini et al., 2010; Sable et al., 2006;
Walker et al., 1984; Ikehata et al.,, 2010; Mitsuoka et al., 2021) is
because of its evolved glass compositions [l'm 7e and 14), reaching
andesite to dacite (see Section 5.2). However, it is important to note that
the explosive eruptions of the Young Merapi were less voluminous (VEL
3-4) compared to the other famous sub-Plinian and/or Plinian erupti
(VEI 4-5) (Fig. 14). This might be related to pheno-crystallinity in the
pre-eruptive magma chamber. In particular, the product of VEI 3-4
eruptions of the Young Merapi are typically phenocryst-rich (>0.4 gu),
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while the product of VEI 5 eruptions is typically having a significantly
lower pheno-crystallinity (<0.3 @pc, with a predominantly <0.1 ¢pc)
(Fig. 14). This may suggest that a highly crystalline magma tends to be
less-eruptible than the less crystalline ones, and consequently, termi-
nates the eruption quickly. As time goes by, it is very likely that phe-
nocrysts in both magma types will undergo crystal settling process,
causing a stratification in the magma chamber (i.e., the upper portion is
more evolved and phenocr}fst—poo@'lile the lower portion tend to be
less evolved and phenocrystrich; e.g., Ginibre et al., 2004, Suhendro
et al., 2021). If this scenario occurs, the portion of eruptible magma
increases, thus may allow a more voluminous eruption (larger VEI) in
future; therefore, we suggest that geophysical modelling of the modern
Merapi magmatic system will be crucial for eruption forecasting and
hazard mitigation.

6. Conclusion

The results of petrography, bulk-rock, glass, and feldspar composi-
tions suggest that (at least) two different magmatic bodies are sourcing
the explosive eruptions during the Young Merapi stage. Type [ is slightly
more mafic than type II, as suggested by the abundance of pyroxene,
lower bulk-rock and glass silica contents, and more calcic feldspar
microlite compositions. These conditions strongly suggest that type [
magma is hotter than type II. The prevalence of disequilibrium textures
in plagioclase and pyroxene phenocrysts (i.e., finely sieved and reversely
and oscillatory zoned) strongly suggests that the complex architecture of
the magma plumbing system at Merapi (i.e., consisting of numerous
vertically-distributed and connected magmatic reservoirs between 700
and 100 MPa) has been established at least since the Young Merapi
stage. Furthermore, type I pumice typically has lower MVND and MND
values compared to type 11, suggesting that type | magma experienced
less intense matrix-bubble nucleation and microlite crystallization due
to lower Si0z and higher temperature conditions. This implies that the
eruption of type I magma was less explosive than type II magma.
Noteworthy, the fact that all deposits include a substantial amount of
fresh- and phenocryst-rich volcanic lithics (11-50% Cpy,. ) suggests that
the explosive eruptions of the Young Merapi were always initiated by
dome formation, similar to that of the Modern Merapi case (e.g., the
1872 and 2010 CE eruption). Finally, we also pointed out that the
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relatively small volume (VEI 3-4) of the Young Merapi eruptions might
be caused by the mushy condition of the magma reservoirs (>0.4 gp);
namely, highly crystalline magma tends to be less-eruptible than the less
astalline ones, thus terminating the eruption quickly.
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