JRST (Jurnal Riset Sains dan Teknologi) ISSN 2579-9118 (print) ISSN 2549-9750 (online) http://jurnalnasional.ump.ac.id/index.php/JRST
> Peer-Reviewers (/index.php/JRST/about/displayMembership/73)
> Publication Ethics (/index.php/JRST/pages/view/publicationethics)
> Abstracting & Indexing (/index.php/JRST/about/editorialPolicies#custom-1)
> Register (/index.php/JRST/user/register)
> Author Guidelines (/index.php/JRST/pages/view/authorguide)
> Author Fees (/index.php/JRST/about/submissions#authorFees)
> Contact (/index.php/JRST/about/contact)
> Search (/index.php/JRST/search)
> OJS for Author (/index.php/JRST/pages/view/ojsforauthor)
> OJS for Reviewer (/index.php/JRST/pages/view/ojsforreviewer)

Direktorat Jenderal Penguatan Riset dan Pengemba Kementerian Riset, Teknologi, dan Pendidikan 1

Kutipan dari Keputusan Direktur Jenderal Penguatan Riset dan Pengembangan, Kementerian Riset, Teknologi, dan Pendidikan Tinggi Republik Indonesia Nomor: 10/E/KPT/2019 Tentang Hasil Akreditasi Jurnal Ilmiah Periode 2 Tahun 2019

JRST (Jurnal Riset Sains dan Teknologi)

E-ISSN: 25499750

Penerbit: Lembaga Publikasi Ilmiah dan Penerbitan (LPIP), Universitas Muhammadiyah Purwokerto

Ditetapkan sebagai Jurnal Ilmiah

TERAKREDITASI PERINGKAT 3

Akreditasi berlaku selama 5 (lima) tahun, yaitu Volume 2 Nomor 2 Tahun 2018 sampai Volume 7 Nomor 1 Tahun 2023

Direktur Jenderal Penguatan Riset dan Pengembangan

DIREKTORAT š DAN PENGEMBANGAN 2 Dr. Muhammad Dimyati Dr. MURQUINUS

(https://drive.google.com/open?id=1cQO7PwBq8dG53kllSgWrRL2OWdUGVwpa)

User

You are logged in as...

anggerbagus29

My Journals (https://jurnalnasional.ump.ac.id/index.php/index/user) My Profile (https://jurnalnasional.ump.ac.id/index.php/JRST/user/profile) Log Out (https://jurnalnasional.ump.ac.id/index.php/JRST/login/signOut)

Reference Management Tool

(https://www.mendeley.com/download-mendeley-desktop/)

Article Template

DOC

(https://drive.google.com/file/d/1VZY-BUhhpaZrjuwgfLuQ-GP8_xqR32Jn/view?usp=sharing)

Font Size

Make font size smaller Make font size default Make font size larger

Current Issue

[1.0] (https://jurnalnasional.ump.ac.id/index.php/JRST/gateway/plugin/WebFeedGatewayPlugin/atom) 😆 📧 🚺 (https://jurnalnasional.ump.ac.id/index.php/JRST/gateway/plugin/WebFeedGatewayPlugin/rss2) 1.0 (https://jurnalnasional.ump.ac.id/index.php/JRST/gateway/plugin/WebFeedGatewayPlugin/rss)

Peer-Reviewers (/index.php/JRST/about/displayMembership/73)

Visitor Stats

Flag Counter (http://s01.flagcounter.com/countries/v13O)

Statcounter

00251851 (https://www.statcounter.com/)

View JRST Stats (http://statcounter.com/p11605289/?guest=1)

Home (https://jurnalnasional.ump.ac.id/index.php/JRST/index) / User (https://jurnalnasional.ump.ac.id/index.php/JRST/user) / Author (https://jurnalnasional.ump.ac.id/index.php/JRST/user)

/ Submissions (https://jurnalnasional.ump.ac.id/index.php/JRST/author) / #14428 (https://jurnalnasional.ump.ac.id/index.php/JRST/author/submission/14428)

Review (https://jurnalnasional.ump.ac.id/index.php/JRST/author/submissionReview/14428)

#14428 REVIEW

Summary (https://jurnalnasional.ump.ac.id/index.php/JRST/author/submission/14428) Review (https://jurnalnasional.ump.ac.id/index.php/JRST/author/submissionReview Editing (https://jurnalnasional.ump.ac.id/index.php/JRST/author/submissionEditing/14428)

SUBMISSION

Authors Angger Bagus Prasetiyo, Kartinasari Ayuhikmatin Sekarjati 🖭 (https://jurnalnasional.ump.ac.id/index.php/JRST/user/email? redirectUrl=https%3A%2F%2Fjurnalnasional.ump.ac.id%2Findex.php%2FJRST%2Fauthor%2FsubmissionReview%2F14428&to%5B%5D=%22Angger%20Bagus%20Prase Title Desain dan Analisis Frekuensi Natural Rangka Mesin Penyiang Gulma Menggunakan Metode Finite Element Analysis Section Articles Editor Feri Wibowo 🗉 (https://jurnalnasional.ump.ac.id/index.php/JRST/user/email?redirectUrl=https%3A%2F%2Fjurnalnasional.ump.ac.id%2Findex.php%2FJRST%2Fauthor%

PEER REVIEW

Round 1

Review Version	14428-39109-1-RV.docx (https://jurnalnasional.ump.ac.id/index.php/JRST/author/downloadFile/14428/39109/1) 2022-07-31
Initiated	2022-10-29
Last modified	2022-11-14
Uploaded file	Reviewer B 14428-42755-1-RV.docx (https://jurnalnasional.ump.ac.id/index.php/JRST/author/downloadFile/14428/42755/1) 2022-11-08

EDITOR DECISION

Decision				
Notify Editor				
Editor Ver				

Author Version

Accept Submission 2022-11-14

(https://jurnalnasional.ump.ac.id/index.php/JRST/author/emailEditorDecisionComment?articleId=14428) Editor/Author Email Record 🤍 14428-42756-1-ED.docx (https://jurnalnasional.ump.ac.id/index.php/JRST/author/downloadFile/14428/42756/1) 2022-11-08 14428-42756-2-ED.docx (https://jurnalnasional.ump.ac.id/index.php/JRST/author/downloadFile/14428/42756/2) 2022-11-14 14428-42815-1-ED.docx (https://jurnalnasional.ump.ac.id/index.php/JRST/author/downloadFile/14428/42815/1) 2022-11-11 Delete (https://jurnalnasional.ump.ac.id/index.php/JRST/author/deleteArticleFile/14428/42815/1)

Upload Author Version

Pilih File Tidak ada file yang dipilih

ISSN: 2549-9750

JRST (Jurnal Riset Sains dan Teknologi) is licensed under a co () (http://creativecommons.org/licenses/by-sa/4.0/)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-sa/4.0/).

Jurnal Riset Sains dan Teknologi Volume x No. x Bulan Tahun

e-ISSN: 2549-9750 p-ISSN: 2579-9118

Natural Design and Analysis of Weed Weeding Machine Frames Using FEA Method

Angger Bagus Prasetiyo^{1*}, Kartinasari Ayuhikmatin Sekarjati²,

 ¹ Program Studi Teknik Mesin, Institut Teknologi Nasional Yogyakarta Jl. Babarsari, Caturtunggal, Depok, Sleman, Yogyakarta 55281, Indonesia
² Program Studi Teknik Industri, Institut Sains & Teknologi AKPRIND Yogyakarta Jl. Kalisahak No 28, Klitren Gondokusuman, Yogyakarta 55222, Indonesia

email: *1anggerbprasetiyo@gmail.com

ABSTRACT

DOI; 10.30595/jrst.xxxx

Histori Artikel:

Diajukan: xx/xx/20xx

Diterima: xx/xx/20xx

Diterbitkan: xx/xx/20xx To be able to sustain the majority of the loads created by other components linked to the frame of the welding machine, the machine's frame must be designed and built with sturdiness. The purpose of this study is to identify the natural frequency and shape of the weed-weeding machine frame. This examination is crucial to ensure that resonance doesn't happen as a result of weeding machine component damage. ANSYS software was utilized to assess the mild steel employed in the study's frame. The investigation of the weeding machine frame's natural frequency yielded the following results: 12, 366 Hz, 52, 109 Hz, 67.26 Hz, 85, 807 Hz, 174, 55 Hz, and 178, 97 Hz. The wedding machine frame's maximum deformation values are 18,708mm, 26.758mm, 19,869mm, 13,912mm, 16.312mm, and 18,458mm. Utilizing ANSYS, modal analysis can shorten the design cycle and lower design expenses. The weed weeder's frame conforms to the design specifications.

Key words: weed wedding frame, natural frequency, modal analysis, Ansys

Commented [AH1]: FEA method should be explain, thus common people can be understand

Commented [AH2R1]: Please add the tittle in BAHASA as well

Commented [AH3]: Please add what methods use in this case

1. INTRODUCTION

Every three months, when the rice plants reach the ages of 15 days and 30 days, weed control is done twice in paddy fields. Weeds are plants that coexist with other plants and compete with them for resources like sunshine, food, water, and space (Upendar et al., 2018). Farmers use 30% of the expenditures allocated for managing paddy fields to control weeds (Pandey et al., 2019).

Currently, there are four different approaches to controlling weeds: manually, mechanically, chemically, and biologically (Upendar et al., 2018). The manual control approach faces many challenges, such as the time and labour requirements that it entails (K.T., 2019). Environmental contamination is impacted by chemical control. An alternative is to use mechanical weed control, which is more efficient and labour-intensive (Kumar & Mohankumar, 2019).

The advantage of mechanical weed control is that it keeps the soil surface looser, allowing for improved water penetration into the soil (Prasad et al., 2019). Figure 1 depicts the weeding machine prototype in broad strokes. The design of the claws, their number, and their degree of inclination while working are a few variables that determine the outcomes of weeding. To assist farmers in efficiently and effectively weeding sugar, it was decided to design a prototype weeding machine. Commented [AH4]: Add the benefit of your study Commented [AH5R4]: Please add the abstract in bahasa as well

Gambar 1. Weed weeding machine

The engine frame is a machine's most crucial part since it serves as the foundation for mounting other parts including the engine, tiller cultivator, and claw cultivator. To be able to sustain the majority of the loads created by other components linked to the weeding machine's frame, the frame must be designed and constructed with sturdiness. Aesthetics, safety, convenience, and ease of use are a few considerations that must be taken into account before designing the weed weeding machine. Component safety factors must also be taken into consideration, notably the weed weeding machine structure (Awwaluddin, 2019).

The determination of the load is an important factor to take into account when designing a weed weeding machine. It is vital to understand the force operating on the power weeder machine. A designer must therefore take the load application into account. The power weeder tool is made to remove weeds from the muddy ground. This could result in an excessive push and load. There will be an inertia force acting on the entire frame if it has no mass and is moving quickly (Soden et al., 1986).

To reduce expenses caused by mistakes in the product design drawing process, the primary step in the machine production process is to create a design using CAD technology(Cekus et al., 2019; Chirende et al., 2019). Design optimization can also reduce design flaws (Vegad & Yadav, 2018). This is frequently used in businesses that deal with mechanics and other constructions (Gheorghe et al., 2018). ANSYS is a piece of software that can assist designers in finding solutions to technical issues (Al-Shammari & Abdullah, 2018).

Based on the above description of the issue, the goal of this study is to use numerical simulation to perform dynamic analysis, particularly the analysis of the natural frequency and normal mode on the parts of the weeding machine. The value of the natural frequency and the normal mode shape of a component or structure are both found using the modal analysis approach. an approach to fundamental dynamic analysis that is used to identify a structure or component's vibrational properties. One of the factors to consider while developing a component is the form of the mode and natural frequency. (Ari et al., 2022).

Previous research that used modal analysis to examine a 3D elevator computer desk entity revealed that the desk's strength and stiffness were in compliance with design specifications and that there was no resonance (Jinlong & Zhenqian, 2018). The next study also does a natural frequency analysis on engine parts (pistons). The findings of his study demonstrate that capital analysis can decrease design time and improve piston efficiency (Zheng, B.; Zhang J.; Yao, 2019). The ANSYS software was used to carry out the modal analysis. Engineers and designers are already familiar with this program. Before a structure is employed, its dynamic features can be known and enhanced through this modelling.

2. METHOD

Many steps must be completed in this study, including pre-processing, processing, and post-processing (Prasetiyo & Fauzun, 2018).

1. Design and Material

First, SolidWorks 2022 software was used to create the frame for the weed-weeding machine, which was then saved in the *iges format. Figure 2 depicts the general design of the weed weeding machine frame. After that, enter the parameter data for the beginning conditions, gird distribution and frame material of the weedweeding machine in the ANSYS program.

Figure 2. 3D Weed weeding machine frame

Commented [AH6]: it should be Materials and Methods

Mild steel was utilized as the study's frame material because it is widely available, reasonably priced, and has a high yield strength (Kubasad, 2018). Table 1 shows the simulation parameters in general.

Description	Value
Young's Modulus	200 Gpa
Poison's Ratio	0.31
Density	7750
Tensile Yield Strength	320 Mpa
Tensile Ultimate Strengt	h 400 MPa

2. Mesh and Initial Condition

Domain or mesh division has an impact on computational modelling when utilizing simulation techniques (Doustdar & Kazemi, 2019). Gird division is one procedure with a high level of intricacy (Sosnowski et al., 2018). Tetrahedral mesh, hexahedral mesh, and polyhedral mesh are some of the mesh types used in the simulation (García Pérez & Vakkilainen, 2019; Prasetiyo et al., 2019; Sosnowski et al., 2019).

Figure 3. Weed machine frame mesh results Figure 4 displays the capital analysis boundary conditions. Table 2 lists the FEM using ANSYS assumptions.

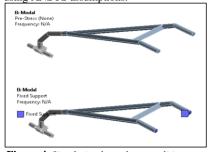


Figure 4. Simulation boundary conditions: prestress (top) and location of fixed support on the handle (bottom)

Table 2. Assumption FEM		
Value		
Pre-Stress		
7183		
14148		
Tetrahedral		

3. Modal Analysis Theory

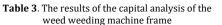
As a collection of modal coordinates and modal parameters used to express independent equations, modal analysis is a differential equation of vibration on a linear time-invariant system of physical coordinates (Jinlong & Zhenqian, 2018). Determine the vibration properties of a structure, including its natural frequency and mode shape, using modal analysis alone(Al-Maliky & Albermani, 2018). The issue's dynamical equation of motion:

 $[M] \{\ddot{x}\} + [k] \{x\} = \{0\}$ (1)

Simple harmonic vibration makes up the structure's free vibration, and the displacement is a sine function.

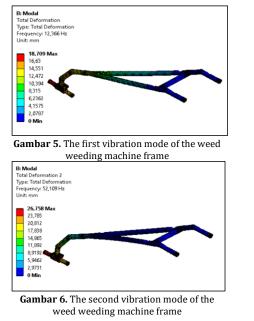
 $x = x \sin \omega t \qquad (2)$

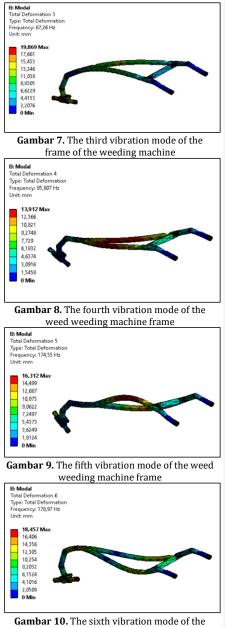
For modal analysis, the vibration frequency ω_i dan mode Φ_i are calculated using the equation: $([K] - \omega_i^2[M]) \{\Phi_i\} = 0$ (3)


{x} is the displacement vector, and [K] is the stiffness matrix. The equation of the characteristic value of ω_i^2 is the circular vibrational frequency and the natural vibrational frequency of $f = \omega_i/2\pi$, with eigenvalue matching to eigenvector {x}i and vibration mode corresponding to $\pi/2$.

3. RESULTS AND DISCUSSION

To efficiently evaluate dynamic systems, the nodal analysis uses the properties of eigenvalues and eigenvectors (Ari et al., 2022). With the use of Ansys, modal analysis can be computed via numerical simulation. This numerical simulation was performed to identify the weeding machine's frame's inherent frequency and mode shape.


Table 3 displays the findings of the modal analysis performed using ANSYS for the first mode to the first mode. Additionally, Figure 5 shows the first vibration mode through vibration mode. Figures 6, 7, 8, 9, and 10 show several situations. The outcomes of the frame weeding machine's natural frequency values for the initial mode to the succeeding modes of 12, 366 Hz, 52, 109 Hz, 67.26 Hz, 85, 807 Hz, 174, 55Hz, and 178, 97 Hz.


First Author, Second Author, Third Author Judul Naskah Artikel

Mode	Frequency	Deformation
	Natural (Hz)	Maximum
	· ·	(mm)
1	12, 366	18, 708
2	52,109	26,758
3	67,26	19, 869
4	85,807	13,912
5	174,55	16,312
6	178,97	18,458

The first and sixth modes of the weeding machine's frame's maximum deformation are 18,708mm, 26.758mm, 19,869mm, 13,912mm, 16,312mm, and 18,458mm. This deformation's value is so great that it must be foreseen to prevent resonance.

weed weeding machine frame

The frame of the weeding machine is built using the findings of the modelling modal analysis of the framework mentioned above in order to avoid resonance and deep frequency in the actual work (Zhengshi, L.;Ronghui, and G; Enwei, 2011). Because the resonant frequency of the vibration effect at its peak has been supplied in modelling form, modal analysis is crucial. This is a reference that should be taken into account while choosing the weed weeding machine's frame design to prevent failure. The intricacies and shapes of the modes and frequencies can be utilized as a point of reference for further study in the harmonic and transient dynamic analysis that this modal analysis serves as a foundation for.

4. CONCLUSION

Using ANSYS software, the capital analysis of the weeding machine's parts led to make conclusion as follow:(1) The first through sixth modes' natural frequencies and vibrational frequencies are 12, 366 Hz, 52, 109 Hz, 67.26 Hz, 85, 807 Hz, 174, 55 Hz, and 178. 97 Hz. The frame of the weed weeding equipment is in good shape. (2) The weeding machine's frame can deform to a maximum of 18,708 mm, 26,758 mm, 19,869 mm, 13,912 mm, 16.312 mm, and 18,458 mm. (3) The design cycle can be sped up and costs reduced by using ANSYS software for collaborative simulation and analysis of the frame performance of weeding machines. (4) The weed weeding machine's frame design complies with design specifications and prevents damaging resonance from occurring during process activity.

ACKNOWLEDGEMENTS

I would like to thank the Director of Research, Technology and Community Service (DRTPM) of Higher Education Ministry of Education and Culture, Research Institute for Community Service and Innovation (LPPMI) Yogyakarta National Institute of Technology for supporting this research. And all parties that we cannot mention one by one.

REFERENCES

- Al-Maliky, F. T., & Albermani, M. J. (2018). Structural Analysis of Kufasat Using Ansys Program. Artificial Satellites, 53(1), 29–35. https://doi.org/10.2478/arsa-2018-0003
- Al-Shammari, M. A., & Abdullah, S. E. (2018). Stiffness to Weight Ratio of Various Mechanical and Thermal Loaded Hyper

Composite Plate Structures. *IOP Conference Series: Materials Science and Engineering*, 433(1). https://doi.org/10.1088/1757-899X/433/1/012051

- Ari, L., Wibawa, N., Uji, B., Antariksa, P., & Nasional, I. (2022). Analisis Frekuensi Natural Rangka Main Landing Gear Pesawat UAV Menggunakan Ansys Workbench. Jurnal Mesin Nusantara, 5(1), 65–73. https://doi.org/10.29407/jmn.v5i1.17580
- Awwaluddin, M. (2019). Analisa Kekuatan Rangka Sepeda Listrik Menggunakan Software SolidWorks. *Piston: Journal of Technical Engineering*, 3(1), 5–16. https://doi.org/http://dx.doi.org/10.3249 3/pjte.v3i1.7486
- Cekus, D., Gnatowska, R., Kwiatoń, P., & Šofer, M. (2019). Simulation research of a wind turbine using SolidWorks software. *Journal* of Physics: Conference Series, 1398(1). https://doi.org/10.1088/1742-6596/1398/1/012001
- Chirende, B., Li, J. Q., & Vheremu, W. (2019). Application of finite element analysis in modeling of bionic harrowing discs. *Biomimetics*, 4(3), 1-11. https://doi.org/10.3390/biomimetics4030 061
- Doustdar, M. M., & Kazemi, H. (2019). Effects of fixed and dynamic mesh methods on simulation of stepped planing craft. *Journal* of Ocean Engineering and Science, 4(1), 33– 48.

https://doi.org/10.1016/j.joes.2018.12.00 5

- García Pérez, M., & Vakkilainen, E. (2019). A comparison of turbulence models and two and three dimensional meshes for unsteady CFD ash deposition tools. *Fuel*, 237(September 2018), 806-811. https://doi.org/10.1016/j.fuel.2018.10.06 6
- Gheorghe, G. V., Persu, C., Gageanu, I., & Cujbescu, D. (2018). Structural and modal analysis in solidworks of basic structure of equipment to prepare germinative bed in strips. *Engineering for Rural Development*, 17(May), 818–826. https://doi.org/10.22616/ERDev2018.17. N064

Commented [AH7]: So many conclusion, but there are no discussion previously, Please add the discussion about what conclusion are

JRST (Jurnal Riset Sains dan Teknologi) - Vol.xxx (xx) 20xxx - (1 - 10)

- Jinlong, C., & Zhenqian, S. (2018). Finite Element Analysis of Static and Dynamic Characteristics of Elevator Desk Structure Based on ANSYS Workbench. Journal of Engineering Mechanics and Machinery, 3, 14–20. https://doi.org/https://dx.doi.org/10.239 77/jemm.2018.31003
- K.T., R. (2019). Development of Power Weeder for Line Sown Paddy Crop. International Journal of Agriculture Environment and Biotechnology, 12(3). https://doi.org/10.30954/0974-1712.08.2019.9
- Kubasad, P. R. (2018). Numerical Analysis for a Bicycle Frame made of Mild Steel and Composite. 3(4), 40–46.
- Kumar, N. K. S., & Mohankumar, A. P. (2019). Performance Evaluation of a Power Operated Wetland Weeders for Paddy. International Journal of Current Microbiology and Applied Sciences, 8(04), 2266–2272. https://doi.org/10.20546/ijcmas.2019.804 .265
- Pandey, S., Verma, A. K., Sirmour, A., Gandhi, I., & Vishwavidyalaya, K. (2019). Ergonomical studies on single row power weeder for rice crop. Journal of Crop and Weed, 15(1), 145– 150. https://www.cropandweed.com/archives/

2019/vol15issue1/15-1-22.pdf

- Prasetiyo, A. B., Azmi, A. A., Pamuji, D. S., & Yaqin, R. (2019). Pengaruh Perbedaan Mesh Terstruktur dan Mesh Tidak Terstruktur Pada Simulasi Sistem Pendinginan Mold Injeksi Produk Plastik. Prosiding Nasional Rekayasa Teknologi Industri Dan Informasi XIV Tahun 2019 (ReTII), 2019(November), 400-406.
- Prasetiyo, A. B., & Fauzun, F. (2018). Numerical study of effect of cooling channel configuration and size on the product cooling effectiveness in the plastic injection molding. MATEC Web of Conferences, 197, 8– 11. https://doi.org/10.1051/matecconf/2018

19708019

Soden, P. D., Adeyefa, B. A., Wong, Y. S., & Millar, M. A. (1986). Loads, Stresses, and deflections in Bicycle Frames. *The Journal of Strain Analysis for Engineering Design*, *21*(4), 185-195. https://doi.org/10.1243/03093247V2141 85

- Sosnowski, M., Krzywanski, J., Grabowska, K., & Gnatowska, R. (2018). Polyhedral meshing in numerical analysis of conjugate heat transfer. *EPJ Web of Conferences*, 180, 4–9. https://doi.org/10.1051/epjconf/2018170 02096
- Sosnowski, M., Krzywanski, J., & Scurek, R. (2019). A fuzzy logic approach for the reduction of mesh-induced error in CFD analysis: A case study of an impinging jet. *Entropy*, *21*(11). https://doi.org/10.3390/e21111047
- Upendar, K., Dash, R. C., Behera, D., & Goel, A. K. (2018). Ergonomical Evaluation of Power Weeder in Wetland Paddy Condition. International Journal of Current Microbiology and Applied Sciences, 7(11), 855–862. https://doi.org/10.20546/jicmac.2018.711

https://doi.org/10.20546/ijcmas.2018.711 .101

- Zheng, B.; Zhang J.; Yao, Y. (2019). Finite Element Analysis of the Piston Based on ANSYS. Information Technology,Networking,Electronic and
 - Automation Control Conference, 45(06), 45-3218-45-3218.

https://doi.org/10.5860/choice.45-3218

Zhengshi, L.;Ronghui, and G; Enwei, C. (2011). Fundamentals of mechanical dynamics. Advance Education Press.

JRST (Jurnal Riset Sains dan Teknologi) - Vol.xxx (xx) 20xxx - (1 - 10)