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grammatical and a lot of punctuation mistakes in the manuscript which need to be corrected. 
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Introduction 
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Experimental 
• Repetitive punctuation error (please choose the ‘°C’ carefully throughout the whole manuscript) 
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• Take note of unit spacing and citation spacing issue 
Reply: 
Thank you for the suggestion, it has been revised 
 
Results and Discussion 
• Authors may include the activation energy for the electrical conductivity analysis since the NBSC 
showed both metallic and semiconductor behaviour and explain a bit more on these behaviour. 
Reply:Thanks for the confirmation, the energy activation value for the NBSC cathode has been 
added. 
 
 
 
 
• Please refer to the reference style on merging the text citation styles. 
Reply: Thank you for the suggestion. 
 
• 3.2(2nd paragraph). NBSC+0.5 the same as NBSC+0.5M SDC? If the materials name was 
abbreviated, please specify first. 

Despite the fact that there are still plenty of fossil fuels available, important technological 

advancements have been made, and demand on ecological environmental preservation is 

increasing [1]. Fuel cells (FC) and hybrid electric vehicles play a major role in decreasing 

carbon dioxide pollutions.  By using the H2 generated by this process, FC vehicles (FCVs) can 

reduce CO2 emissions in this sector to 80% compared to traditional vehicles [2]. In a global 

effort to overcome the dangers of climate change, cogeneration systems, especially fuel 

cells, are becoming massive due to of their excellent energy efficiency [3]. 

 

Novelty this work is the cathode design using double perovskite oxide doped with 0.5 M 

electrolyte material. 

As previously reported that the activation energy (Ea) of the NBSC cathode polarization 
resistance from the Ln(R) vs. 1000/T is 102.5 kJ mol-1  
 



Reply: Thank you, the abbreviation used is LBSC+0.5 M SDC and has been written the same 
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• Did all the Nyquist plot was fitted? If yes, please include in the caption and please include the 
circuit used for the fitting. 
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• Figure 6. 
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The microstructure of the NBSC+0.5 M SDC cathode surface and cross-sectional microstructure 

of the two layers (cathode and electrolyte) are presented in Figure 6. 

 

(b) 

Figure 6. SEM images: (a) The cathode surface and (b) Cross-

sectional microstructure of the two layers (cathode and 

electrolyte). 

 

 

The resistance of the evaluation cell was demonstrated using an analogous circuit of the 
impedance curve and was fitted using Z-View based on the following series circuit R1 (R2-CPE1) 
R3-CPE2). The R is same as to Ohmic resistance (RΩ), and the resistance of polarization is 
characterized by two resistances (R2+R3). A constant phase element (CPE) symbolizes a non - 
ideal capacitor, such as the double layer at a nonplanar TPB, and the n parameter correlated 

with the CPE equivalent to a real capacitor, where n=1. 

 
Figure 4. (a)-(c) Nyquist diagram of impedance spectroscopic 
symmetric cell NBSC+0.5 M SDC|SDC|NBSC+0.5 M SDC in the OPP 
range between 0.112–0.019 atm at various temperatures and (d) 
Equivalent circuit used to fit the impedance spectra  
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growth, such as grain expansion or particle coarsening, is critical since a practical SOFC operates 

at high temperatures (at T = 800-1000 °C) [33]. With increasing temperature and current density, 

as well as the duration of the test, the microstructure gets coarser and denser [34]. 

 

The limit for good performance solid oxide fuel cell (SOFC) value is Rp <0.15 Ω.cm2). Testing 

symmetrical cells in the OPP range of 0.214–0.0027 atm obtained relatively small RP values 

between 0.030 Ω.cm2–0.039 Ω.cm2 at 800oC. The surface morphology of the NBSC+0.5 M SDC 

sample corresponds to the physical characteristics of the SOFC cathode 
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Figure 1 shows the relationship between temperature and the NBSC cathode electrical 
conductivity at P(O2) = 0.03 atm and 0.0032 atm in the range of 300oC and 800oC. 
 

The NBSC + 0.5 M SDC cathode sample has better long-term stability than NBSC, with a 

lower Rp value of 2.35. 

Solid oxide fuel cells (SOFCs) are the most environmentally friendly electrical energy 

generator and effective electrochemical energy converter. 

Cobalt-based mixed ionic-electronic conductors such as LnBa0.5Sr0.5Co1.5Fe0.5O5+δ [8], 

Pr0.5Y0.5BaCo2O5+δ [9], SmBaCo2-xNixO5+δ [10], PrBaCo2-xMnxO5+δ, [11], 
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GdBa0.5Sr0.5Co1.5Fe0.5O5+δ [15], YBa0.7Sr0.3Co2O5+δ [16] have been published as promising 

materials for IT-SOFC cathodes. 

The coefficient of thermal expansion (TEC) of SOFC components (cathode, electrolyte 

anode, and interconnection material) must be similar (almost the same) in order to obtain 

efficient operation. 
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The Ce(NO3)3.6H2O and Sm(NO3)3.6H2O were used to synthesize the electrolyte powder SDC as 
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Novelty in this work is the cathode design using double perovskite oxide doped with 0.5 M 
electrolyte material. 
 

 

 

The symmetric cell test was also carried out under various atmospheric pressure P(O2) = 

0.112 atm–0.019 atm at a temperature between 600°C and 800°C. 
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Abstract  

The cathode materials fabrication with outstanding performance and stability at intermediate 

temperatures of 600oC–800oC is required for the prospective mass production of solid oxide 

fuel cells (SOFCs). Infiltration is a potential method because it has proven successful in 

fabrication and cell performance enhancement. This study mainly focuses on the electrical 

conductivity and long-term reliability of cathode symmetric cells NdBa0.5Sr0.5Co2O5+δ (NBSC) 

fabricated by traditional solid-state reaction techniques. The electrical conductivity value of 

the cathode is in the range of 174–278 S.cm-1. Impedance analysis showed that the infiltration 

of 0.5M SDC on the NBSC cathode surface dramatically reduced the polarization resistance 

(Rp) between layers (cathode-electrolyte) from 3.32 Ω.cm2 to 1.82 Ω.cm2 at 600oC or 

decreased by 45 % compared to NBSC cathode without 0.5M SDC infiltration. The enhanced 

stability of NBSC cathode specimens with 0.5M SDC infiltration (NBSC+0.5 M SDC) under 

SOFC operating conditions proves that samples with infiltration extend their lifetime. 

Compared to the NBSC cathode, the NBSC + 0.5 M SDC cathode has better long-term stability 

with a lower RP value of 2.35 Ω.cm2. In the OPP range of 0.214-0.0027 atm at 800oC, the 

relatively tiny Rp value of the symmetrical cell is between 0.030 Ω.cm2 and 0.039 Ω.cm2, 

below the 0.15 Ω.cm2 suitable performance limit for solid oxide fuel cells 

Keywords: SOFC; Cathode; Electrical conductivity; Infiltration; Long-term performance 

stability 

 

1. Introduction 

Although plenty of fossil fuels are still available, critical technological advancements 

have been made, and the demand for ecological and environmental preservation is increasing 

[1]. Fuel cells (FC) and hybrid electric vehicles play a significant role in decreasing carbon 

dioxide pollution.  By using the H2 generated by this process, FC vehicles (FCVs) can reduce 

CO2 emissions in this sector to 80% compared to traditional vehicles [2]. In a global effort to 

overcome the dangers of climate change, cogeneration systems, especially fuel cells, are 

becoming massive due to of their excellent energy efficiency [3]. 

Solid oxide fuel cells (SOFCs) are the most environmentally friendly electrical energy 

generator and effective electrochemical energy converter. The current weakness of SOFCs is 

the high operating temperature of 800°C–1000°C, which significantly affects cost, reliability, 

and application. The focus of SOFC development is efforts to reduce the working temperature 

of SOFC between 600oC to 800oC. Unfortunately, the low working temperature causes the 

SOFC electrode kinetics to decrease. Two essential strategies can be used to develop SOFCs 

today, namely (a) reducing ohmic resistance; (b) reducing the polarization resistance of the 

cathode [4, 5]. Cathode development continues to be carried out to improve electrode and 

cathode optimization as a factor that determines the overall SOFC performance [6]. 

Materials that provide ionic and electronic conduction (mixed ionic-electronic 

conductors, MIEC) can minimize polarization resistance [7]. Most oxide compositions with a 

perovskite structure show mixed conductivity in the medium n temperature range [8]. Cobalt-



containing double perovskite-based cathodes exhibited excellent electrochemical activity and 

compatibility with SDC doping electrolytes [9, 10]. Cobalt-based mixed ionic-electronic 

conductors such as LnBa0.5Sr0.5Co1.5Fe0.5O5+δ [11], Pr0.5Y0.5BaCo2O5+δ [12], SmBaCo2-

xNixO5+δ [13], PrBaCo2-xMnxO5+δ, [14], NdBa0.25Sr0.75CoCuO5+δ, [15], YBa0.5Sr0.5Co2-

xFexO5+δ, [16], SmBa1−xSrxCo2O5+δ δ [17], GdBa0.5Sr0.5Co1.5Fe0.5O5+δ [18], YBa0.7Sr0.3Co2O5+δ 

[19], and YBaCo2O5 + δ [20] have been published as promising materials for IT-SOFC cathodes. 

The coefficient of thermal expansion (TEC) of SOFC components (cathode, electrolyte anode, 

and interconnection material) must be similar in order to obtain efficient operation. 

One effective method to reduce the thermal expansion coefficient (TEC) and improve 

electrochemical performance is through the infiltration/impregnation method of electrolyte 

material into a porous cathode to obtain a composite cathode. Using composite cathodes in 

SOFC devices reduces TEC and expands the cathode layer's three-phase boundary zone (TPB) 

[21]. In this work, catalytically active Ce0.8Sm0.2O1.9 (SDC) nanoparticles were infiltrated into 

the NBSC cathode to improve the catalytic activity of the SDC electrolyte-based electrode. The 

cathode properties of the NBSC were evaluated for electrical conductivity and electrochemical 

impedance spectroscopy during long-term performance testing. Novelty in this article is the 

cathode design using double perovskite oxide doped with 0.5 M electrolyte material.  This work 

suggested that a double perovskite-based cathode material is appropriate for IT-SOFC 

applications. 

2.    Experimental 

2.1. Preparation of cathode materials and electrolytes 

The NdBa0.5Sr0.5Co2O5+δ (NBSC) cathode was fabricated using the solid-state reaction 

method. The precursors use high-grade materials Nd2O3, SrCO3, BaCO3, and CoO. The milled 

material was dried, crushed into a powder using a grinder, and then calcined for four hours at 

1100°C in the air. The Ce(NO3)3.6H2O and Sm(NO3)3.6H2O were used to synthesize the 

electrolyte powder SDC as a precursor material. The precursor material was dissolved in 

distilled water, then added to the ammonia solution with this stoichiometric ratio. After the 

mixture's pH was adjusted to 9.5 to 10, coprecipitation powder was heated for two hours at 600 

°C in the air. The reference [22] provides detailed instructions for SDC fabrication.  

The infiltration technique procedures are detailed in reference [23, 24]. For fabrication 

of the required SDC nanoparticles in the NBSC porous cathode, symmetric cells impregnated 

with 0.5M SDC, hereinafter abbreviated as NBSC+0.5M SDC were heated at 900oC for 2 

hours. The Ce(NO3)3.6H2O and Sm(NO3)3.6H2O were dissolved in deionized water to create 

an aqueous nitrate solution of the Ce0.8Sm0.2(NO3) precursor. The porous cathode was coated 

on either side with 0.5M SDC nanoparticle liquid using the microliter injector. 

                   Table 1. Composition and Abbreviation of NdBa0.5Sr0.5Co2O5+δ Based Specimens 

Composition                                                          Abbreviation             

NdBa0.5Sr0.5Co2O5+δ                                                                         NBSC 

NdBa0.5Sr0.5Co2O5+δ+0.5 M SDC                          NBSC+0.5 M SDC 

 

2.2. Specimen Testing 

The NBSC pellets measuring 5 x 5 x 10 mm3 were sintered at 1200oC for 1 hour and 

were used as electrical conductivity test specimens. Electrical conductivity was investigated by 

the four-probe DC method, and the voltage response was recorded using a Keithley 2420 

Source Meter at a temperature between 300oC and 800oC by applying a continuous current to 

the two current wires. For electrochemical testing of symmetrical cell samples, the NBSC-

based cathode was utilized as the working electrode (WE). The Ag counter electrode (CE) was 



placed on the opposite side of the sintered SDC disk, and the reference electrode (RE) was 

fabricated 3–4 mm from the WE. Screen-printing was used to coat the NBSC-based cathodes 

on both sides of the SDC electrolyte, and they were further sintered in the air at 1000°C for 

four hours.  

Cell stability testing was carried out for 96 hours without stopping at 600oC. The 

symmetric cell test was also carried out under various atmospheric pressure P(O2) = 0.112 atm–

0.019 atm at a temperature between 600°C and 800°C. The applied frequency ranges from 100 

kHz to 0.1 Hz with an AC amplitude signal of 10 mV. The AC impedance measurement 

calculated the current density value (io). The following formula adapted from the Bulter–

Volmer formula was used to calculate the value of io, and the total cathode Rp was calculated 

from the intersection with the axis of the impedance loop [25]. 

𝑖𝑜 =
𝑅𝑇𝑣

𝑛𝐹𝑅𝑝
 

Where F is Faraday's factor (F = 96500 C mol-1), R is the ideal gas constant (R = 8,31 J mol-1 

K-1), The total electrons number transferred in the reaction is given by the notation n, and the 

number of times the rate-determining step begins in a whole reaction event is given by the 

notation m. For oxygen reduction reactions, n and m are commonly used to be 4 and 1.14, 

respectively. The comprehensive calculating process refers to reference [26].  

 

3. Results and Discussion 

3.1. NBSC Cathode Electrical Conductivity 

Figure 1 shows the relationship between temperature and the NBSC cathode electrical 

conductivity at P(O2) = 0.03 atm and 0.0032 atm at 300oC to 800oC. It can be seen that at P(O2) 

= 0.03 atm (red line), at a temperature of 302oC it has reached the highest electrical conductivity 

value of 278 S.cm-1. Defects in the Co-O-Co bond lattice cause the release of oxygen atoms 

from the lattice and the reduction of Co4+ to Co3+ or Co3+ to Co2+ to cause a significant drop in 

electrical conductivity beginning at 330oC. At 440oC the rate of decrease in conductivity slows 

down and forms a linear line from 552oC to 800oC. At P(O2) = 0.0032 (blue line), the reduction 

in electrical conductivity starts from the initial heating of 300oC to 603oC, forming a linear line.  
 

 

 

 

 

 

 

 

 

 

Figure 1. NBSC cathode conductivity at P(O2) = 0.03 atm and P(O2) 

 = 0.0032 atm with respect to temperature 



 

At 611oC–663oC, conductivity began to move slowly, increasing significantly up to 800oC. 

NBSC cathode conductivity values are 174-278 S.cm-1 and meet the requirements of SOFC 

cathode material [27]. The metallic conductivity properties of NBSCs can be related to several 

factors [19, 28, 29]: (1) energy bands overlap between Co-3d and O-2p; (2) the presence of 

Co4+ ions from the thermally affected Co3+ charge disproportion; and (3) loss of oxygen from 

the lattice at higher temperatures.  

Cobalt-containing perovskites are widely investigated because of their high electronic 

and oxide-ionic conductivity values. The conductivity value of this material exceeds perovskite 

oxide with other 3d transition metal ions [30]. Measurement of the NBSC cathode shows a 

relatively high electrical conductivity value above 100 S cm-1, indicating that it is a p-type 

electronic conductor. The total value of the conductivity of the NBSC sample is a combination 

of the electronic ions conductivity and oxides caused by the existence of electron-hole pairs 

and oxygen vacancies. The ionic conductivity of the perovskite-type oxide material is 

significantly lower than the electronic conductivity. Therefore, it can be concluded that 

electronic conductivity dominates the conductivity value [31]. As previously reported that the 

activation energy (Ea) of the NBSC cathode polarization resistance from the Ln(R) vs. 1000/T 

is 102.5 kJ mol-1 [32]. 

3.2. Symmetrical Cell Long-term Test 

The specimens were evaluated using AC impedance spectroscopy under conditions of an 

open circuit. The symmetrical cell performance was examined to assess the NBSC long-term 

stability, and the polarization resistance (Rp) value was measured versus time in stationary air 

at 600 °C. Figure 2(a)-(e) shows NBSC cathodes with infiltration and without SDC infiltration 

and the Rp value as a function of time under stationary air as an oxidant in the 2 to 96 hours. 

The Rp value of NBSC+0.5 M SDC cathode decreased significantly from 3.32 Ω.cm2 to 1.82 

Ω.cm2 or decreased by 45% compared to NBSC cathode without infiltration.  

The Rp value of NBSC+0.5 M SDC cathode in this study is still better than that achieved 

by cathodes GdBa0.5Sr0.5Co1.5Fe0.5O5+δ [18] and YBa0.7Sr0.3Co2O5+δ [19], which are 2.33 

Ω.cm2, and 3.29 Ω.cm2, respectively. The Rp value decline was primarily due to the additional 

SDC|NBSC+0.5 M SDC phase limit. Gas-phase molecules can easily migrate into the 

SDC|NBSC+0.5 M SDC interlayer, mainly to the produced nano-sized SDC particles on the 

very porous NBSC surface cathode. The oxygen reduction reaction (ORR) activity in 

electrochemical sites is greatly increased under these conditions. The ORR is on the surface 

area of the NBSC cathode, simultaneously hitting the electrolyte and air. These newly formed 

SDC nanoparticles were deposited on the NBSC porous framework [24]. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Long-term test: (a) Nyquist diagram of symmetrical cell 

spectroscopic impedance NBSC|SDC|NBSC and (b) NBSC+0.5 M SDC 

|SDC|NBSC+0.5 M SDC in the temperature range 2–96 hours at 600oC 

The Rp value of the NBSC+0.5 M SDC cathode specimen increases gradually over time, 

whose value goes up from 1.82 Ω.cm2 in the initial 2 hours to 2.35 Ω.cm2 on a long-term test 

of 96 h at 600°C as shown in Table 2. A slight improvement in the cathodic Rp, and the rising 

rate was about 0.55% h−1 from the initial two h to 96 h. The NBSC+0.5 M SDC cathode sample 

has better long-term stability than NBSC, with a lower Rp value of 2.35 Ω.cm2. Figure 3 shows 

the polarization resistance rate between the NBSC cathode and NBSC+0.5 M SDC. 



Table 2. Rp Value of symmetrical cells for NBSC and 

NBSC+0.5 measured during 96 hours at 600oC  

Time 

(h) 

Rp (Ω.cm2) 

NBSC NBSC+0.5 M SDC 

2 3.32 1.82 

12 3.39 1.86 

24 3.46 1.85 

36 3.40 1.92 

48 3.43 1.96 

60 3.40 2.05 

72 3.46 2.07 

84 3.43 2.26 

96 3.47 2.35 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Polarization resistance (Rp) curve for long-term symmetric cell 

testing: (a) NBSC|SDC|NBSC, and (b) NBSC+0.5 M SDC|SDC|NBSC+0.5 M 

SDC. 

The cathode delamination of the electrolyte can be one of the possible causes of the increased 

Rp at the beginning of rapid degradation. Delamination between layers affects a drop in the 

activity site of the ORR, which causes an improvement in polarization resistance. According 

to previous studies, the difference between NBSC (TEC = 25.2 ppm K-1) and SDC (TEC = 

12.4 ppm K-1) is approximately 12.8 ppm K-1 [22]. After testing, the surface of the cathode 

sample experienced agglomeration. The microstructure growth, such as grain expansion or 

particle coarsening, is critical since a practical SOFC operates at high temperatures (at T = 800-

1000 °C) [33]. With increasing temperature and current density, as well as the duration of the 

test, the microstructure gets coarser and denser [34]. 

3.3. Symmetric cell measurement in various OPP  

To further investigate the oxygen reduction reaction process of the symmetrical specimen 

NBSC+0.5 M SDC|SDC|NBSC+0.5 M SDC. The electrochemical impedance spectroscopy 

(EIS) was tested at different partial pressures of oxygen (OPP) according to previously 



published papers [22]. The Rp values are based on the Nyquist diagram of NBSC+0.5 M SDC 

cathode impedance spectroscopy on SDC electrolytes with various OPP at various 

temperatures, as shown in Figure 4. The polarization resistance values increase with decreasing 

OPP at 600oC, 700oC, and 800oC, respectively. At a temperature of 600oC, the value of the 

polarization resistance (Rp) increases from 3.69 Ω.cm2 (0.112 atm) to 6.05 Ω.cm2 (0.019 atm). 

At 700oC the pattern is the same, the Rp value increases from 0.75 Ω.cm2 to 1.17 Ω.cm2 at 

0.112 atm and 0.019 atm, respectively. Also, at 800oC the increase in polarization resistance 

continues from 0.030 Ω.cm2 to 0.039 Ω.cm2 at OPP = 0.112 atm and 0.019 atm, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 
Figure 4. (a)-(c) Nyquist diagram of impedance spectroscopic 

symmetric cell NBSC+0.5 M SDC|SDC|NBSC+0.5 M SDC in the 

OPP range between 0.112–0.019 atm at various temperatures and (d) 

Equivalent circuit used to fit the impedance spectra 

 

The resistance of the evaluation cell was demonstrated using an analogous circuit of the 

impedance curve and was fitted using Z-View based on the following series circuit R1 (R2-

CPE1) R3-CPE2). The R is the same as Ohmic resistance (RΩ), and the resistance of polarization 

is characterized by two resistances (R2+R3). A constant phase element (CPE) symbolizes a non 

- ideal capacitor, such as the double layer at a nonplanar TPB, and the n parameter correlated 

with the CPE equivalent to a real capacitor, where n=1. 

 

 

 

 

 

 

 

 

 

 

Figure 5. Polarization resistance between layers as a function of 

oxygen partial pressure (OPP) symmetrical cell NBSC+0.5 M 

SDC|SDC|NBSC+0.5 M SDC at various temperatures 

 

Table 3. The Rp value of symmetrical cells in the OPP range of 0.214–

0.0027 atm at various temperatures 

OPP (atm) 600oC 700oC 800oC 



Rp (Ω.cm2) Rp (Ω.cm2) Rp (Ω.cm2) 

0.112 3.69 0.75 0.030 

0.074 3.99 0.82 0.032 

0.050 4.54 0.91 0.033 

0.035 5.06 1.02 0.035 

0.027 5.61 1.08 0.038 

0.019 6.05 1.17 0.039 

 

The log (Rp) as a function of log P(O2) cathode NBSC+0.5 M SDC measured at various 

temperatures is illustrated in Figure 5. It is evident that as P(O2) decreases, the value of Rp 

rises due to a reduction in mobile interstitial oxygen at lower P(O2). The Rp value of 

symmetrical cells in the OPP range of 0.214 atm–0.0027 atm at various temperatures, as shown 

in Table 3. The value ranges between n = 0.20 and n = 0.38, depending on the slope of the 

curve. The result shows that the primary ORR process is dominated by the charge transfer 

process (charge transfer processes) TPB and/or site 2PB cathode NBSC+0.5 to the electrolyte 

in the temperature range 600oC–800oC [35]. The transfer of electrons and oxygen is closely 

related to the cathode structure, which impacts fuel cell performance, including reaction 

kinetics and charge and mass transfer preprocessing. 

The microstructure of the NBSC+0.5 M SDC cathode surface and the cross-sectional 

microstructure of the two layers (cathode and electrolyte) are presented in Figure 6. The 

adhesion of the two layers (cathode and electrolyte) looks strong. The grain size was evenly 

distributed in the range of 1–2 µm, and the microstructure of the NBSC+0.5 M SDC cathode 

was porous. A good SOFC cell morphology includes (1) a porous cathode microstructure, (2) 

interlayer (electrolyte-cathode) connectivity, and (3) a dense electrolyte layer. Good 

morphology promotes rapid oxygen diffusion, minimizes polarization resistance, and improves 

current collection. The surface morphology of the NBSC+0.5 M SDC sample corresponds to 

the physical characteristics of the SOFC cathode. The limit for reasonable performance solid 

oxide fuel cell (SOFC) value is Rp <0.15 Ω.cm2). The surface morphology of the NBSC+0.5 

M SDC sample corresponds to the physical characteristics of the SOFC cathode.  

 

 

 

 

  

 

  

 

(a)                                                                       (b) 

Figure 6. SEM images: (a) The cathode surface and (b) Cross-sectional microstructure of 

the two layers (cathode and electrolyte). 

4. Conclusion 



This research analyzes the electrical conductivity, infiltration impact, and stability of the 

cathode operating at an intermediate temperature of 600oC–800oC. The NBSC cathode 

conductivity values are in the range that meets the requirements of SOFC cathode materials. 

The surface morphology of the NBSC+0.5 M SDC sample matches the physical properties of 

the SOFC cathode. The relatively small Rp value of the symmetrical cell is between 0.030 

Ω.cm2 and 0.039 Ω.cm2 in the OPP range 0.214–0.0027 atm at 800oC, below 0.15 Ω.cm2 the 

reasonable performance limit for solid oxide fuel cells (SOFC). The infiltration of 0.5 M SDC 

on the NBSC porous cathode significantly reduced the interlayer's polarization resistance value 

by almost half compared to that of the NBSC cathode without 0.5 M SDC infiltration. The 

NBSC+0.5 M SDC cathode specimen demonstrated stability under SOFC operating conditions 

and increased operational life compared to non-infiltrated cathodes. 
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	Despite the fact that there are still plenty of fossil fuels available, important technological advancements have been made, and demand on ecological environmental preservation is increasing [1]. Fuel cells (FC) and hybrid electric vehicles play a maj...

