

GEOMATE2018-Acceptance of Abstract and invitation-g1

Zakaria <zakaria@bio.mie-u.ac.jp> Kepada: listyanitheophila@gmail.com 13 Maret 2018 17.42

Dear Authors,

Thanks.

GEOMATE2018-Acceptance of Abstract and invitation-Group 1 is attached.

Best regards.

Zakaria

GEOMATE2018-Acceptance of Abstract and invitation-g1.pdf 162K

INTERNATIONAL CONFERENCE GEMAATE

March 13, 2018

Paper ID Number: 8104
Ms. T. Listyani R.A. Listyani
Sekolah Tinggi Teknologi Nasional Yogyakarta
Indonesia
E-mail: listyanitheophila@gmail.com

Subject: Acceptance of Abstract for full paper submission at the GEOMATE2018-KL, Malaysia

Dear Ms. T. Listyani R.A. Listyani,

We are pleased to inform you that after careful review and assessment, the members of the GEOMATE2015 Technical Committee have accepted your abstract entitled "TOPOGRAPHIC CONTROL ON GROUNDWATER FLOW IN CENTRAL OF HARD WATER AREA, WEST PROGO HILLS, INDONESIA" for full paper submission at the GEOMATE2018-KL, Malaysia conference. It is, therefore, with great pleasure that we extend our formal invitation to you to submit the full paper through online submission using the following link. http://www.geomate.org/full-paper.html

Please download the paper template from the conference web page and prepare your paper according to the instructions/manuscript preparation guidelines given in the template. Your paper should look exactly like the template.

The file name of the full paper should be your paper ID number "8104". Please submit the <u>full</u> paper as early as possible to complete the review process smoothly. If you have any correction in title/abstract, please make the necessary correction in full paper. You do not need to resubmit abstract separately.

Should you require more information, please do not hesitate to contact us. We look forward to hearing from you soon.

Sincerely yours,

Prof. Zakaria Hossain,

GEOMATE2018 Conference Chairman

The Eighth International Conference on Geotechnique, Construction Materials and Environment, Division of Environmental Science and Technology

Graduate School of Bioresources

Mie University, 1577 Kurima Machiya-cho,

Tsu-city, Mie 514-8507, Japan

http://www.geomate.org conference@geomate.org

GEOMATE2018-Acceptance of Abstract and invitation-g1

listyani theo listyanitheophila@gmail.com> Kepada: Zakaria <zakaria@bio.mie-u.ac.jp> 13 Maret 2018 23.35

I accept the invitation. [Kutipan teks disembunyikan]

GEOMATE2018 KL Malaysia Accepted Abstract-Group 1

Zakaria <zakaria@bio.mie-u.ac.jp> Kepada: GEOMATE <conference@geomate.org> 13 Maret 2018 20.38

Dear Authors,

Thanks. GEOMATE2018 KL Malaysia Accepted Abstract-Group 1 is attached.

Best regards.

Paper ID	Title	First Name	Last Name	Paper Title
8102	Dr.	Abdull Halkm	Abdul	Correlation Mohr Circle of Stratum Index Factor Using Shearing Wave and N value of Standard Penetration Test.
8103	Dr.	Abdull Halim	Abdul	2d – seismic standard penetration test (sspt) method theory.
8104	Ms.	T. Listyani R.A.	Listyani	Topographic control on groundwater flow in central of hard water area, west progo hills, indonesia
8105	Mr.	Mohammad	Mirza Hassan	Two-dimensional trapdoor stability analysis by strength reduction methods
8108	Prof.	Muawia	Dafalla	Influence of density and thickness on polystyrene insulated concrete block walls
8109	Prof.	Naomasa	Honda	A Study on landslide and collapse caused by the 2016 Kumamoto Earthquake in Japan
8110	Dr.	Chollada	Kanjanakul	The comparison between soil sampling and unsaturated soil hydraulic database (UNSODA)
8111	Dr.	Chollada	Kanjanakul	The comparison between soil sampling and unsaturated soil hydraulic database (UNSODA)
8112	Prof.	Radhi	Alzubaidi	A New Pressuremeter for Testing Stiff Clay
8113	Dr.	Sakdirat	Kaewunruen	Dynamic behaviour of ballast exposed to flooding condition
8114	Dr.	Sakdirat	Kaewunruen	Mechanical properties of concrete with recycled composite and plastic aggregates
8115	Ms.	JIJI	KRISHNAN	Colloidal silica grout in soil improvement: an extensive review
8116	Dr.	Yulvi	Zaika	The behavior of untreated and treated expansive soil as subgrade of flexible pavement
8117	Mr.	Atinesh Vijay	Prasad	Assessment of Quality of Different Aggregates for Road Construction in the Central Division of Fiji
8118	Prof.	Bambang	Istijono	Community Empowerment in Planting Vegetation to Reduce Coastal Abrasion in West Sumatra
8119	Prof.	Bambang	Istijono	The Effect of Flood to Quality Index of Soil Physical Properties at The Downstream of Kuranji River Watershed, Padang City.
8120	Mr.	Emmanuel	Endene Che	Geotechnical assessment of malaysian residual soils for utilization as clay liners in engineered landfills
8121	Mr.	John Carlo	Samarita	Investigating the effect of geotextile as reinforcement on the bearing capacity of granular soil
8122	Dr.	Mary Ann	Adajar	A comparative study on the use of woven geotextile for settlement reduction of spread footing on granular soil
8123	Dr.	Mary Ann	Adajar	Investigating the effectiveness of rice husk ash as stabilizing agent of expansive soil
8124	Mr.	Mohammadjavad	Yaghoubi	Industrial By-Product-Based Binders for Use in Deep Soil Mixing Technique
8125	Ms.	Yukari	Sugiyama	Environmental parameters controlling the habitat of the brackish water clam Corbicula japonica identified by predictive modelling
8126	Dr.	AMINU	IBRAHIM	Lightweight buoyant foundation on peat soil using bamboo culms and plastic bags
8127	Mr.	ІМОТО	YUSUKE	Development of Carbon Fiber Reinforced Thermoplastic Strand Rod
8128	Dr.	Shoji	Yokohama	Cyclic mechanical properties of sandy soils by mixing recycled asphalt pavement material
8129	Mr.	Joenel	Galupino	Soil Profile Generation of Quezon City, Philippines using Nearest Neighbor Algorithm
8130	Mr.	Muhammad Rashid	Iqbal	Compressibility and strength characteristics of the sludge blended with crushed concrete and incineration ash
8131	Prof.	Michiko	Masuda	Why the riverbank dune maintains the dune plant population, especially an endangered species, Fimbristylis sericea?
8132	Mr.	Shuichi	Kuwahara	Numerical analysis for 3D influence of pile pulling-out holes on surrounding ground

8133	Mr.	Hiroyuki	Hashida	Possibility of neutral solidification materials for preventing radioactive substance effluxes from reservoirs
8134	Mr.	Ken-ichi	Shishido	Leakage risk assessment on side impervious walls at coastal landfill sites
8135	Mr.	Kosuke	Moriiwa	Development of metal-insolubilizing material on soil contaminated with heavy metals using chemical and mineral analysis
8136	Dr.	abdul	hakam	Quick Assessment Procedures for Two Stories Building Based On Numerical Simulation Results
8137	Mr.	Than Htike	Oo	Approach to assessment of soil and water contamination by mining activities in mandalay region, myanmar
8138	Dr.	Bernardo	Lejano	Compressed earth blocks with powdered green mussel shell as partial binder and pig hair as fiber reinforcement
8139	Dr.	Bernardo	Lejano	Investigation of the flexural strength of c-section cold-formed steel using computational and experimental method
8140	Mr.	Yusui	Murata	Development of the modified eicp focused on the high strength under low calcite precipitation rate
8141	Prof.	abdul	hakam	Liquefaction Analysis of Road Embankment in Pidie Jaya due to Aceh Earthquake in 2016
8142	Mr.	Mohd Saufi	Mohd Redzuan	Water retention, gas transport parameters, and thermal properties for roadbed materials utilizing construction demolition waste and industrial waste
8143	Mr.	Hiroshi	Kubo	Measurement of cement content in cement mixed soil by hydrochloric acid heat reaction method
8144	Mr.	Suyuti	Nurdin	Timber pile installed into soft ground to increase the force of required reinforcement for coastal bank protection
8145	Mr.	Harman	Ajiwibowo	Water quality and sedimentation modeling in singkarak lake, western sumatra
8146	Prof.	VISA	MARIA	Removal of methyl orange and cadmium from solution using modified activated charcoal
8147	Mr.	SEIYA	YAMAZAKI	Relationship between formation method of crushed stone pile and bearing force characteristics
8148	Mr.	Ryota	Nakamura	Study on influence of penetration distance on gel time of chemical solution
8149	Mr.	Takuya	Moe	A study on strength development of suspended type injection material using microparticles used for liquefaction countermeasure
8150	Mr.	Sivakumar	Gowthaman	Bio-Inspired Stabilization of Embankment Soil Mediating Psychrobacillus sp. And Low-grade Chemicals: Preliminary Laboratory Investigation of Small & Medium Scales
8151	Dr.	Yasuhide	Mochida	Study on strength estimation of soil cement used in the embedded pile method by electrical resistivity measurement
8152	Dr.	Hiroyuki	Araki	Model tests on thrust protecting method for buried pipeline by using geogrid gabion
8153	Mr.	Danjuma	Inarigu	Integrated Land use- Flood Management Approach in Urban Sprawl of Lafia Nasarawa State Nigeria
8154	Mr.	Kota	Okazaki	Relationship between rainfall intensity and shallow landslides focusing on quasi-saturated phenomenon
8155	Ms.	Moeko	Matoba	Collapse Mechanism of Steel Piles below High-Rise Building in Liquefied Soil
8156	Ms.	Fatin Amirah	Kamaruddin	Modified Natural Fiber on Soil Stabilization with Lime and Alkaline Activation Treated Marine Clay
8157	Mr.	Hiroki	Goto	Centrifuge test of superstructure-sc pile-liquefied soil system and sc piles' dynamic buckling behavior
8158	Mr.	Mohd Taufik	Haron	Assessment of landslide hazard and prediction of slope failures using area based and individual based method
8159	Mr.	Wisam	Dheyab	Soil Stabilized with Geopolymers for Low Cost and Environmentally Friendly Construction

8160	Mr.	Lokmane	Abdeldjouad	Effect of curing temperature on the development of hard structure of alkali-activated soil
8161	Ms.	Teing Teing	Tan	Effects of Alkali-Activated Waste Binder in Soil Stabilization
8162	Dr.	Akiko	Usami	Role difference among rivers affected by volcanic activities of Mt. Ontake for water quality of the Nigorigawa River.
8163	Mr.	Hirosuke	Hirano	Geochemistry analyses of sea floor sediments from the coasts of shikine island in japan indicate an influence of co2 seeps to coastal environments
8164	Mr.	Adhitya Yoga	Purnama	Evaluation of filler material behavior in pre-bored pile foundation system due to slow cyclic lateral loading in sandy soil
8165	Prof.	Katsuyuki	KAWAI	Density distribution within ceramic saturated for suction measurement
8166	Mr.	wisam	dheyab	Application of Alkali-Activated Olivine Reinforced with Glass Fibers in Soil Stabilization
8167	Ms.	Syazwani	Sahrir	Effects of Urban Sprawl on Air Pollution: A Review
8168	Mr.	Thepporn	Jaroenroy	An alternative integrated Occupational Health, Safety and Environmental management system for Small and Medium-sized Enterprises (smes) in Thailand
8169	Dr.	Shoji	Kamao	Prediction method of long-term settlement of highly organic soil using natural strain
8170	Dr.	Adnan Anwar	Malik	Diaphragm Wall Supported by Ground Anchors and Inclined Struts: A Case Study
8171	Ms.	Erica Elice	Uy	Volume Change Behavior of Sea Water Exposed Coal Ash using Hyperbolic Model
8172	Dr.	Dalal	Maturi	Finite difference method for solving heat conduction equation of the granit
8173	Prof.	MACEDON	MOLDOVAN	Assessement of the environmental impact reduction of a solar house through a geothermal-solar energy mix
8174	Dr.	Eko	Suryo	Effect of Clay Shale Subsoil Existence on Instability of an Unsaturated Soil Slope
8175	Mr.	Stevanus Nalendra	Jati	Coal Properties and Cleat Attributes at Tanjung Enim Coalfield in South Palembang Sub-basin, South Sumatra
8176	Mr.	MUHAMMAD	IRFAN	Some insight into direct observation of hydrological parameters in peatland area of the south sumatera
8177	Mr.	Miller	Cutora	Hydrocompression strain determination using the modified rectangular hyperbolic method
8178	Mr.	Keita	Sugito	Analytical verification of the influence of liquefaction on shallow underground structure
8179	Prof.	Sachi	Furukawa	Shear behaviour of connection between steel and reinforced concrete members adopting a new column base system allowing a steel moment-resisting frame to perform beam yielding mechanism
8180	Dr.	Arinto Yudi Ponco	Wardoyo	Developing reheated motorcycle exhaust for pm2.5 emission
8181	Mr.	Kota	KONO	Creating formula for computations of pullout resistance exerted by open-wing-type ground anchor
8182	Dr.	Arinto Yudi Ponco	Wardoyo	A Model of Particulate Matter Dispersion from Unfiltered Air Conditioning Room
8183	Mr.	Mutsuki	Sato	Compressive loading test of steel pile top filled with concrete
8184	Mr.	Mohammed	Gubran	Insights on Experimenting Physical and Geotechnical Properties of Dredged Marine Soil
8185	Mr.	Raden	Putra	Identification of Land Use and Peat Fire in 1997 and 2015 In South Sumatra Province, Indonesia
8186	Dr.	Mudthir	Bakri	Analysis of Stabilization of Slopes Overlying Bedrock Using Piles and Effect of Socketed Length of Pile on Stability
8187	Ms.	Jeanely	Rangkang	Characterization of infiltration capacity of three diamonds paver type as the permeable pavement surface layer

8188	Ms.	Deni Okta	Lestari	The Influence of 2016 Negative Indian Ocean Dipole over the Indonesian Region
8189	Mr.	Wijaya	Mardiansyah	Characteristics of water balance and tidal effect in the Air Sugihan sub-river basin
8190	Dr.	Yuko	Ishida	Influence of flood to the inclined stupa in Ayutthaya, Thailand
8191	Mr.	Tetsuya	Okano	Investigation of Collapse Behavior of Cylindrical Specimen Using 3D SPH analysis
8192	Ms.	Prima Yane	Putri	Utilization of bio-based materials for repairing leakage in concrete
8193	Mr.	Mohammad Zahidul Islam	Bhuiyan	Laboratory Calibration Of Soil Pressure Transducer For A Specified Field Application
8194	Dr.	muhammad	ikhsan setiawan	Smart Houses, Internet Of Things And Eco-Friendly
8195	Dr.	Deffi	Ayu Puspito Sari	Simulation Of Fire Smoke Dispersion And Temperature Distribution Using Computational Fluid Dynamics (Fire Case Of Kebon Melati Sub-District)
8196	Dr.	Gilford	Estores	Regression Modeling of Breakout Strength of an Expansion Anchor Bolt as Influenced by Concrete Aggregates
8197	Dr.	Tatyana	Krupnova	Concentrations and health risk assessment of metal(loid)s in outdoor and indoor dust from russian city

GEOMATE2018 KL Malaysia Accepted Abstract-Group 1 & 2

Zakaria <zakaria@bio.mie-u.ac.jp> Kepada: conference@geomate.org</zakaria@bio.mie-u.ac.jp>	11 April 2018 15.59
Dear Colleagues,	
I am pleased to attach the list of accepted abstracts and paper template for your kind reference. paper using the following link.	Please submit full
http://geomate.org/full-paper.html	
We appreciate early submission of full paper to facilitate the review process smoothly.	
Best regards.	
Zakaria	
3 lampiran	
GEOMATE2018 KL Malaysia Accepted Abstract-Group 1 & 2.pdf 186K	
Template GEOMATE KI, Malaysia 2018 docx	

copyright-geomate.doc 1484K

Paper ID	Title	First Name	Last Name	Paper Title
8102	Dr.	Abdull Halkm	Abdul	Correlation Mohr Circle of Stratum Index Factor Using Shearing Wave and N value of Standard Penetration Test.
8103	Dr.	Abdull Halim	Abdul	2d – seismic standard penetration test (sspt) method theory.
8104	Ms.	T. Listyani R.A.	Listyani	Topographic control on groundwater flow in central of hard water area, west progo hills, indonesia
8105	Mr.	Mohammad	Mirza Hassan	Two-dimensional trapdoor stability analysis by strength reduction methods
8108	Prof.	Muawia	Dafalla	Influence of density and thickness on polystyrene insulated concrete block walls
8109	Prof.	Naomasa	Honda	A Study on landslide and collapse caused by the 2016 Kumamoto Earthquake in Japan
8111	Dr.	Chollada	Kanjanakul	The comparison between soil sampling and unsaturated soil hydraulic database (UNSODA)
8112	Prof.	Radhi	Alzubaidi	A New Pressuremeter for Testing Stiff Clay
8113	Dr.	Sakdirat	Kaewunruen	Dynamic behaviour of ballast exposed to flooding condition
8114	Dr.	Sakdirat	Kaewunruen	Mechanical properties of concrete with recycled composite and plastic aggregates
8115	Ms.	JIJI	KRISHNAN	Colloidal silica grout in soil improvement: an extensive review
8116	Dr.	Yulvi	Zaika	The behavior of untreated and treated expansive soil as subgrade of flexible pavement
8117	Mr.	Atinesh Vijay	Prasad	Assessment of Quality of Different Aggregates for Road Construction in the Central Division of Fiji
8118	Prof.	Bambang	Istijono	Community Empowerment in Planting Vegetation to Reduce Coastal Abrasion in West Sumatra
8119	Prof.	Bambang	Istijono	The Effect of Flood to Quality Index of Soil Physical Properties at The Downstream of Kuranji River Watershed, Padang City.
8120	Mr.	Emmanuel	Endene Che	Geotechnical assessment of malaysian residual soils for utilization as clay liners in engineered landfills
8121	Mr.	John Carlo	Samarita	Investigating the effect of geotextile as reinforcement on the bearing capacity of granular soil
8122	Dr.	Mary Ann	Adajar	A comparative study on the use of woven geotextile for settlement reduction of spread footing on granular soil
8123	Dr.	Mary Ann	Adajar	Investigating the effectiveness of rice husk ash as stabilizing agent of expansive soil
8124	Mr.	Mohammadj avad	Yaghoubi	Industrial By-Product-Based Binders for Use in Deep Soil Mixing Technique
8125	Ms.	Yukari	Sugiyama	Environmental parameters controlling the habitat of the brackish water clam Corbicula japonica identified by predictive modelling
8126	Dr.	AMINU	IBRAHIM	Lightweight buoyant foundation on peat soil using bamboo culms and plastic bags
8127	Mr.	ІМОТО	YUSUKE	Development of Carbon Fiber Reinforced Thermoplastic Strand Rod
8128	Dr.	Shoji	Yokohama	Cyclic mechanical properties of sandy soils by mixing recycled asphalt pavement material
8129	Mr.	Joenel	Galupino	Soil Profile Generation of Quezon City, Philippines using Nearest Neighbor Algorithm
8130	Mr.	Muhammad Rashid	Iqbal	Compressibility and strength characteristics of the sludge blended with crushed concrete and incineration ash
8131	Prof.	Michiko	Masuda	Why the riverbank dune maintains the dune plant population, especially an endangered species, Fimbristylis sericea?
8132	Mr.	Shuichi	Kuwahara	Numerical analysis for 3D influence of pile pulling-out holes on surrounding ground

8133	Mr.	Hiroyuki	Hashida	Possibility of neutral solidification materials for preventing radioactive substance effluxes from reservoirs
8134	Mr.	Ken-ichi	Shishido	Leakage risk assessment on side impervious walls at coastal landfill sites
8135	Mr.	Kosuke	Moriiwa	Development of metal-insolubilizing material on soil contaminated with heavy metals using chemical and mineral analysis
8136	Dr.	abdul	hakam	Quick Assessment Procedures for Two Stories Building Based On Numerical Simulation Results
8137	Mr.	Than Htike	Oo	Approach to assessment of soil and water contamination by mining activities in mandalay region, myanmar
8138	Dr.	Bernardo	Lejano	Compressed earth blocks with powdered green mussel shell as partial binder and pig hair as fiber reinforcement
8139	Dr.	Bernardo	Lejano	Investigation of the flexural strength of c-section cold-formed steel using computational and experimental method
8140	Mr.	Yusui	Murata	Development of the modified eicp focused on the high strength under low calcite precipitation rate
8141	Prof.	abdul	hakam	Liquefaction Analysis of Road Embankment in Pidie Jaya due to Aceh Earthquake in 2016
8142	Mr.	Mohd Saufi	Mohd Redzuan	Water retention, gas transport parameters, and thermal properties for roadbed materials utilizing construction demolition waste and industrial waste
8143	Mr.	Hiroshi	Kubo	Measurement of cement content in cement mixed soil by hydrochloric acid heat reaction method
8144	Mr.	Suyuti	Nurdin	Timber pile installed into soft ground to increase the force of required reinforcement for coastal bank protection
8145	Mr.	Harman	Ajiwibowo	Water quality and sedimentation modeling in singkarak lake, western sumatra
8146	Prof.	VISA	MARIA	Removal of methyl orange and cadmium from solution using modified activated charcoal
8147	Mr.	SEIYA	YAMAZAKI	Relationship between formation method of crushed stone pile and bearing force characteristics
8148	Mr.	Ryota	Nakamura	Study on influence of penetration distance on gel time of chemical solution
8149	Mr.	Takuya	Moe	A study on strength development of suspended type injection material using microparticles used for liquefaction countermeasure
8150	Mr.	Sivakumar	Gowthaman	Bio-Inspired Stabilization of Embankment Soil Mediating Psychrobacillus sp. And Low-grade Chemicals: Preliminary Laboratory Investigation of Small & Medium Scales
8151	Dr.	Yasuhide	Mochida	Study on strength estimation of soil cement used in the embedded pile method by electrical resistivity measurement
8152	Dr.	Hiroyuki	Araki	Model tests on thrust protecting method for buried pipeline by using geogrid gabion
8153	Mr.	Danjuma	Inarigu	Integrated Land use- Flood Management Approach in Urban Sprawl of Lafia Nasarawa State Nigeria
8154	Mr.	Kota	Okazaki	Relationship between rainfall intensity and shallow landslides focusing on quasi-saturated phenomenon
8155	Ms.	Moeko	Matoba	Collapse Mechanism of Steel Piles below High-Rise Building in Liquefied Soil
8156	Ms.	Fatin Amirah	Kamaruddin	Modified Natural Fiber on Soil Stabilization with Lime and Alkaline Activation Treated Marine Clay
8157	Mr.	Hiroki	Goto	Centrifuge test of superstructure-sc pile-liquefied soil system and sc piles' dynamic buckling behavior

			1	
8158	Mr.	Mohd Taufik	Haron	Assessment of landslide hazard and prediction of slope failures using area based and individual based method
				Soil Stabilized with Geopolymers for Low Cost and
8159	Mr.	Wisam	Dheyab	Environmentally Friendly Construction
8160	Mr.	Lokmane	Abdeldjouad	Effect of curing temperature on the development of hard
8100			Abdelajodad	structure of alkali-activated soil
8161	Ms.	Teing Teing	Tan	Effects of Alkali-Activated Waste Binder in Soil Stabilization
8162	Dr.	Akiko	Usami	Role difference among rivers affected by volcanic activities of Mt.
		7		Ontake for water quality of the Nigorigawa River.
01.63	N 4	Himanuka	Himama	Geochemistry analyses of sea floor sediments from the coasts of
8163	Mr.	Hirosuke	Hirano	shikine island in japan indicate an influence of co2 seeps to coastal environments
				Evaluation of filler material behavior in pre-bored pile foundation
8164	Mr.	Adhitya Yoga	Purnama	system due to slow cyclic lateral loading in sandy soil
04.65	D f	Matana da	1/ 0 / 0 / 0 /	Density distribution within ceramic saturated for suction
8165	Prof.	Katsuyuki	KAWAI	measurement
8166	Mr.	wisam	dheyab	Application of Alkali-Activated Olivine Reinforced with Glass
8100	1711.	Wisaiii	инсуав	Fibers in Soil Stabilization
8167	Ms.	Syazwani	Sahrir	Effects of Urban Sprawl on Air Pollution: A Review
				An alternative integrated Occupational Health, Safety and
8168	Mr.	Thepporn	Jaroenroy	Environmental management system for Small and Medium-sized
				Enterprises (smes) in Thailand
8169	Dr.	Shoji	Kamao	Prediction method of long-term settlement of highly organic soil
		Adnan		using natural strain Diaphragm Wall Supported by Ground Anchors and Inclined
8170	Dr.	Anwar	Malik	Struts: A Case Study
				Volume Change Behavior of Sea Water Exposed Coal Ash using
8171	Ms.	Erica Elice	Uy	Hyperbolic Model
0470	_	5		Finite difference method for solving heat conduction equation of
8172	Dr.	Dalal	Maturi	the granit
8173	Prof.	MACEDON	MOLDOVAN	Assessement of the environmental impact reduction of a solar
01/3	1101.	WIACEBON	WOLDOVAIN	house through a geothermal-solar energy mix
8174	Dr.	Eko	Suryo	Effect of Clay Shale Subsoil Existence on Instability of an
			,	Unsaturated Soil Slope
8175	Mr.	Stevanus Nalendra	Jati	Coal Properties and Cleat Attributes at Tanjung Enim Coalfield in South Palembang Sub-basin, South Sumatra
		MUHAMMA		Some insight into direct observation of hydrological parameters
8176	Mr.	D	IRFAN	in peatland area of the south sumatera
			_	Hydrocompression strain determination using the modified
8177	Mr.	Miller	Cutora	rectangular hyperbolic method
8178	Mr.	Keita	Sugito	Analytical verification of the influence of liquefaction on shallow
01/0	IVII.	Reita	Sugito	underground structure
				Shear behaviour of connection between steel and reinforced
8179	Prof.	Sachi	Furukawa	concrete members adopting a new column base system allowing
				a steel moment-resisting frame to perform beam yielding
		Arinto Yudi		mechanism
8180	Dr.	Ponco	Wardoyo	Developing reheated motorcycle exhaust for pm2.5 emission
0.15			Wang.	Creating formula for computations of pullout resistance exerted
8181	Mr.	Kota	KONO	by open-wing-type ground anchor
8182	Dr.	Arinto Yudi	Wardoyo	A Model of Particulate Matter Dispersion from Unfiltered Air
0107	טו.	Ponco	vvaruoyo	Conditioning Room
8183	Mr.	Mutsuki	Sato	Compressive loading test of steel pile top filled with concrete
8184	Mr.	Mohammed	Gubran	Insights on Experimenting Physical and Geotechnical Properties
0104		Monamined	Subiuii	of Dredged Marine Soil

8185	Mr.	Raden	Putra	Identification of Land Use and Peat Fire in 1997 and 2015 In South Sumatra Province, Indonesia
8186	Dr.	Mudthir	Bakri	Analysis of Stabilization of Slopes Overlying Bedrock Using Piles and Effect of Socketed Length of Pile on Stability
8187	Ms.	Jeanely	Rangkang	Characterization of infiltration capacity of three diamonds paver type as the permeable pavement surface layer
8188	Ms.	Deni Okta	Lestari	The Influence of 2016 Negative Indian Ocean Dipole over the Indonesian Region
8189	Mr.	Wijaya	Mardiansyah	Characteristics of water balance and tidal effect in the Air Sugihan sub-river basin
8190	Dr.	Yuko	Ishida	Influence of flood to the inclined stupa in Ayutthaya, Thailand
8191	Mr.	Tetsuya	Okano	Investigation of Collapse Behavior of Cylindrical Specimen Using 3D SPH analysis
8192	Ms.	Prima Yane	Putri	Utilization of bio-based materials for repairing leakage in concrete
8193	Mr.	Mohammad Zahidul Islam	Bhuiyan	Laboratory Calibration of Soil Pressure Transducer for a Specified Field Application
8194	Dr.	muhammad	ikhsan setiawan	Smart Houses, Internet of Things and Eco-Friendly
8195	Dr.	Deffi	Ayu Puspito Sari	Simulation of Fire Smoke Dispersion and Temperature Distribution using Computational Fluid Dynamics (Fire Case of Kebon Melati Sub-District)
8196	Dr.	Gilford	Estores	Regression Modeling of Breakout Strength of an Expansion Anchor Bolt as Influenced by Concrete Aggregates
8197	Dr.	Tatyana	Krupnova	Concentrations and health risk assessment of metal(loid)s in outdoor and indoor dust from russian city
8198	Ms.	Nevy	Sandra	Corrosion current density of macrocell of horizontal steel bars in reinforced concrete column specimen
8199	Mr.	Kenneth Jae	Elevado	Compressive strength modelling of concrete mixed with fly ash and waste ceramics using machine learning
8200	Dr.	Fumitake	NISHIMURA	Influence of Light on Microbial River Water Ecosystem and its Self-Purification Capacity
8201	Dr.	Lessandro Estelito	Garciano	Efficient Repair Scheduling of a Multiple-Source Lifeline Network using Constrained Spanning Forest (CSF)
8202	Prof.	abdul	hakam	Road Embankment Liquefaction Analysis due to Aceh Earthquake in 2016
8203	Mr.	Arpit	Parikh	Advances in mitigation of offshore geo hazard activity for jack up foundation sinking and tilting
8204	Dr.	Zul-Atfi	Ismail	Improving Maintenance Management Practices on Green Building Projects
8205	Mr.	Kongkit	Yingchaloenkitk hajorn	Slope Stability Analysis of Frictional Fill Materials Placed on Purely Cohesive Clay
8206	Dr.	Aniza	Ibrahim	Optical Observation on Detonation of Shallow Buried Charge in Sandy Soil
8207	Dr.	Aniza	Ibrahim	Investigation of Pile Behaviour Using Rotary –Jacking Method.
8208	Prof.	Boontarika	Thongdonphu m	Pollution carrying capacity assessment in the lower part of mae klong river, thailand
8209	Mr.	Mohammed Ali Mohammed	Al-Bared	Strength sustainable improvement of soft clay treated with large sizes of recycled crushed ceramic tiles
8210	Dr.	Soewignjo Agus	Nugroho	Liquefaction potential of sand on peat deposits with a various grain size with laboratory model

		1	<u> </u>	All clanathic offects of aguagus outracts from six hydranhytes
8211	Dr.	TAIZO	UCHIDA	Allelopathic effects of aqueous extracts from six hydrophytes species on activities of seed and lateral bud of Phragmites
0211	Di.	IAIZO	OCHIDA	japonica Steudel as a green infrastructure plant
				Soil quality index analysis under horticultural farming in sumani
8212	Mr.	Aprisal	Aprisal	upper watershed
				Making simulated lunar highland rocks using Japanese igneous
8213	Prof.	Hiroyuki	li	rocks
				Mathematical modeling of extended Stokes problems for
8214	Prof.	Chi-Min	Liu	Newtonian and non-Newtonian fluids
				The effect of rebar in a short height concrete wall for the ultimate
8215	Prof.	Tetsuya	Ohmura	lateral strength
8216	Mr.	Tyron	Thomson	Sinkhole induced subsidence investigation
8210	IVII.	Tyron	THOMSON	_
8217	Dr.	Elena	Sizova	Forecast of the biological effect of different-sized metal nanoparticles for the use in feed of broiler chickens
				Change Detection in Historical Structures via a Guided Unmanned
8218	Dr.	Krisada	Chaiyasarn	Aerial Vehicle
				Characteristics of organic petrography : implications on coal
8219	Dr.	Endng Wiwik	Hastuti	depositional environment of muara enim formation in tanjung
0219	Di.	Dyah	Tiastuti	enim area, south sumatra, indonesia
		Wacharapon		Defect-driven development: a new software development model
8220	Mr.	Ī	Nachiengmai	for beginners
		g		West Sumatra Coastline Change due to Beach Protection
8221	Prof.	abdul	hakam	Structures
				Development of the spatial distribution of global solar radiation
8222	Dr.	Prince	Asilevi Junior	(gsr) over ghana using sunshine duration model
				Study some parameters related to aeolian rocks and soils
8223	Dr.	Ghazi	Hussain	erosion
8224	Mr.	ALVIN	QUIZON	Reliability Assessment of Wooden Trusses of a Historical School
0224	IVII.	ALVIN	QUIZON	·
8225	Prof.	Kunyanuth	Kularbohettong	Environmental Management Factors of Students Behaviors: The
				Case of Suan sunandha Rajabhat University A Novel Grounded Inductor Based Band Pass Filter Design with
8226	Dr.	Ghanshyam	Singh	Temperature Variation on Bandwidth using Single VDVTA
				Development of the deformation monitoring system with
8227	Dr.	Satoshi	Sugimoto	wireless sensor network and evaluation of mechanical stability
0227	Di.			for damaged stonewalls by huge earthquake in Kumamoto Castle
				Effect of tunnel size and lining thickness on tunnel deformation
8228	Dr.	Prateep	Lueprasert	due to adjacent pile under loading
				Enhancing efficiency of thai sugar cane production by clean
8229	Dr.	Weerawat	Ounsaneha	technology
				Discrete particle simulation model for slaking of geomaterials
8230	Prof.	Yutaka	Fukumoto	including swelling clay minerals
				Evaluation of shear strength parameters of gravel soils with a
8231	Prof.	Jose Carlos	Solis Tito	large scale direct shear equipment built in laboratory
				Evaluation of Bearing Capacity on Soil-Cement Mixing Wall Using
8232	Dr.	Koji	WATANABE	Permanent Pile
		1		Fundamental study of the effect of water level lowering in the
8233	Mr.	Takeshi	Yamamoto	groundwater drainage work utilizing siphon
				Assessment for determination of ptes contamination indicator in
8234	Mr.	Azizi	Abu Bakar	closed urban landfills by utilizing ICP-MS and distribution analysis
		72121	ANU DUKUI	using Guess Field Kriging.
8235	Prof.	Askar	Zhussupbekov	Laboratory experiments of freezing soil
				Experimental study on chemical grouting into calcium-containing
8236	Mr.	Hidetake	Matsui	sand
				Experimental study for suggestion measurement method of
8237	Ms.	Miki	Nishimura	Initial quasi-saturated volumetric water content
L	İ	<u> </u>	<u> </u>	minum quasi saturatea voiumetrie water content

8238	Ms.	Pahala Ge	Nayanthara	Evaluating Possible Avenues to Build Artificial Biogenic
0220	D. 4	Nishadi Muhammad	I I a mi a k	Beachrocks against Coastal Erosion in Sri Lanka Identification of landslide potential area using smorph method
8239	Mr.	Chaidir	Harist	and the relation with vegetation density in indonesia
8240	Prof.	Askar	Zhussupbekov	Design concept for an anchored diaphragm wall in project adpastana, kazakhstan
8241	Dr.	Mitsuru	Komatsu	A study on evaluating the calibration accuracy of soil moisture using a new microchip sensor
8242	Dr.	Ahmad Hilmy	Abdul Hamid	Building mass rail transit in kuala lumpur: is it good transport economics?
8243	Mr.	Raden	Putra	Understanding Fire Distribution in The South Sumatra Peat Area during the Last Two Decades
8246	Dr.	Dewi	Susiloningtyas	SUITABILITY ANALYSIS OF SEAWEED (Eucheuma cottonii) BASED ON ENSO AND MONSOON VARIABILITY IN TARAKAN ISLAND, INDONESIA
8247	Dr.	AHMAD	RIFAI	Slope stability analysis of integrated municipal disposal site based on organic content change to optimize embankment capacity
8248	Dr.	Rohaya	Abdul Malek	Chloride ion Resistivity of Patch-Repaired Reinforced Concrete Elements
8249	Mr.	Kohei	Mishima	Experimental Study on the Effect of Rebar Corrosion on the Measurements of Various Nondestructive Tests
8250	Dr.	Kazuhito	Niwase	Basic Study of Cement Solidification Technology for Solidification of Cesium Adsorbed Zeolite Evaluation of Microscopic Structure of Cement Solidification
8251	Mr.	Rainier Lawrence	Valdez	Seismic Reliability Analysis of Lifeline: A Case Study On The Water Network System of Biñan City, Laguna
8252	Mr.	Jefri Dwi	Putra	Parting Control on Coal Seam Based on Ash Content and Total Moisture, North Musi Rawas, South Sumatra
8253	Mr.	Ahmad	Zubair	Passenger behavioral mapping and station facilities design at commuter line train station (case: tangerang station, indonesia)
8254	Mr.	Doddy	Apriansyah	Public perceptions of transit oriented development plans (case: lebak bulus mrt station, indonesia)
8255	Mr.	Hong-Son	NGUYEN	Quality inspection method of jet-grouting construction by applying acoustic tomography
8256	Ms.	Deni Okta	Lestari	Impact of 2016 Weak La Niña Modoki Event over the Indonesian Region
8257	Dr.	Seiichiro	Fukushima	Development of risk evaluation method considering aftershocks
8258	Mr.	SAJIHARJO	MARTO SURO	Stability performance of loading test for short piled raft foundation system on peat
8259	Dr.	Kazuhiro	Kaneda	Ultimate bearing capacity of footing of two layered clayey soil system by rigid plastic finite element method
8260	Mr.	Unggul	Juswono	THE EFFECTS OF TRANSFLUTHRIN AS THE ACTIVE SUBSTANCE OF ONE PUSH AEROSOL REPELLENT ON MICE ORGAN DAMAGE (Mus musculus) (CASE STUDY OF LUNG, LIVER, BLOOD, AND KIDNEY)
8261	Dr.	Kazuhito	Niwase	Basic Study of Cement Solidification Technology for Solidification of Cesium Adsorbed Zeolite ~ About Influence on Manufacturability and Strength of Cement Solidification by Chemical Admixture ~
8262	Ms.	Noor Suraya	Romali	Flood damage assessment: an analysis of residential damage data and content value
8263	Dr.	ADNAN	ZAINORABIDIN	Compressive behaviour of parit nipah peat under embankment loading
8264	Mr.	Naoya	Nishihara	A fundamental study on pneumatic tomography of unsaturated soil ground using a horizontal one-dimensional column

				Late Miocene – Pliosen Fold Stucture Connection With
8265	Mr.	Muhammad	Rezky	Depositinal System of Coal in West Banko Field in South Sumatra
0203	1411.	Widilalililaa	I TCZRY	Basin
				Modelling of aseismic ground deformation and earthquake
8266	Ms.	PAPIYA	DEBNATH	prediction
				Integration of Spatial Characteristic to Health Services: A Case
8267	Ms.	Irene	Fitrinitia	Study of Children Health Improvement Compare to the
0207	1415.	Sondang	T TET IT THE CO	Environmental Management at Depok City Scale- Indonesia
				Durability of Reinforced Concrete Beams Strengthened Using
8268	Mr.	Arbain	Tata	GFRP Sheet Due to Fatigue Loads
				Performance evaluation of crack localization techniques for
8269	Mr.	Wasif	Khan	concrete and masonry structures
8270	Dr.	Junichiro	Takeuchi	Evaluation of drainage process in porous media by invaded
				percolation probability
8272	Mr.	Luqman	Ali	Damage detection and localization in masonry structure using
		'		faster region convolutional networks
8273	Mr.	Takayuki	Hayashi	Temporal Change of Seismic Load by Probabilistic Seismic Hazard
			7	Analisys with Updating Process
8274	Ms.	Nurhamidah	Nurhamidah	Land subsidence in Sumatera Peatland Forest
				Experimental and Analytical Studies of Flexural Capacity of
8275	Dr.	Sabril	Haris	Concrete-Cold Formed Steel Composite Structures with Tension
				Reinforcement
	_	Mohd		Impact of Mechanical Weathering to the Durability Strength
8276	Dr.	Firdaus	Md Dan	Index of Ayer Hitam
				Comparison of bearing capacity improvement for soft clay using
8277	Dr.	Satyajit	Patel	soil-lime and soil-cement columns
				Study of Anammox Process in an Anaerobic Incubation with
8278	Mr.	l Made Wahyu	Wijaya	Sludge from Decentralized Domestic Wastewater Treatment Plan
0270	1411.		vvijaya	in Surabaya, Indonesia and Gramido Estuary in Portugal
8279	Dr.	Aditya	Parihar	Influence of amplification on seismic response of retaining wall
02/9	DI.	Auitya	Palillai	
8280	Mr.	Kuswantoro	ē	Flood modelling in arid region case study in jeddah city, saudi
				arabia
	_	JAMBUNATH		The Association and Disassociation Tendencies of
8281	Dr.	AN	RAJARAMAN	Environmentally Significant Minerals on Strength Properties of
				Sediments in Ocean Environment
8282	Mr.	Adi	Wibowo	Spatial-Temporal Urban Heat Signature in University Campus
0202		7.0.		Using Remote Sensing
8283	Dr.	Sinardi	Sinardi	Characteristics of Chitosan Membran from Green Gren Mussel
0203	Di.	Siliarui	Jillarui	Shells (Mytilus Virdis Linneaus) for Water Treatment
8284	Dr.	Fauzan	Fauzan	Effect of Soil Structure Interaction on Response of Building
0204	DI.	rauzaii	rauzan	Structure in Padang City, Indonesia
0205	2	Rokhmatulo	Dolchmatulah	Daddy field manning using you multi spectral imageny
8285	Dr.	h	Rokhmatuloh	Paddy field mapping using uav multi-spectral imagery
0205	N. C	Heidy	DI-	Strengthening The Planning of CFD as Car-Free Life Initiative
8286	Ms.	Octaviani	Rachman	(Case: Sudirman-Thamrin Street, Jakarta)
0000				Spatio-temporal analysis of rice field phenology using sentinel-1
8287	Dr.	Supriatna	Supriatna	image in karawang regency, west java, indonesia
				Topographical mapping using uav lidar: a study case in urban
8288	Mr.	Iqbal Putut	Ash Shidiq	forest university of indonesia
				Loading tests of steel-fibre reinforced concrete (sfrc) slabs-on-
8289	Dr.	Jana	Vaskova	ground
		+		Structural evaluations of shelter building in liquifaction prone
8290	Dr.	Fauzan	Fauzan	
				The integration of metagralogical data and land cattelite for
8291	Ms.	MHD	Susilowati	The integration of meteorological data and land sattelite for
				drought

8292	Ms.	МАНА	ALI	Drying Shrinkage, electrical resistivity and mechanical strength of structural mortar containing Fibers at early age
8293	Prof.	Marian	Drusa	Definition of foam concrete layer interacting with subsoil in geotechnical applications
8294	Prof.	Purnawan	Junadi	Technology Improvement for Children Health in Suburban- A Self Diagnose Health Application as An Integration Approach among Health Practitioner

GEOMATE2018-Acceptance of Abstract and invitation-g3

Zakaria <zakaria@bio.mie-u.ac.jp> Kepada: listyanitheophila@gmail.com 11 Mei 2018 13.48

Dear Authors,

Thanks.

GEOMATE2018-Acceptance of Abstract and invitation-Group 3 is attached.

Best regards.

Zakaria

GEOMATE2018-Acceptance of Abstract and invitation-g3.pdf 162K

INTERNATIONAL CONFERENCE GEMAATE

May 11, 2018

Paper ID Number: 8104
Ms. T. Listyani R.A. Listyani
Sekolah Tinggi Teknologi Nasional Yogyakarta
Indonesia
E-mail: listyanitheophila@gmail.com

Subject: Acceptance of Abstract for full paper submission at the GEOMATE2018-KL, Malaysia

Dear Ms. T. Listyani R.A. Listyani,

We are pleased to inform you that after careful review and assessment, the members of the GEOMATE2015 Technical Committee have accepted your abstract entitled "TOPOGRAPHIC CONTROL ON GROUNDWATER FLOW IN CENTRAL OF HARD WATER AREA, WEST PROGO HILLS, INDONESIA" for full paper submission at the GEOMATE2018-KL, Malaysia conference. It is, therefore, with great pleasure that we extend our formal invitation to you to submit the full paper through online submission using the following link. http://www.geomate.org/full-paper.html

Please download the paper template from the conference web page and prepare your paper according to the instructions/manuscript preparation guidelines given in the template. Your paper should look exactly like the template.

The file name of the full paper should be your paper ID number "8104". Please submit the <u>full</u> paper as early as possible to complete the review process smoothly. If you have any correction in title/abstract, please make the necessary correction in full paper. You do not need to resubmit abstract separately.

Should you require more information, please do not hesitate to contact us. We look forward to hearing from you soon.

Sincerely yours,

Prof. Zakaria Hossain,

GEOMATE2018 Conference Chairman

The Eighth International Conference on Geotechnique, Construction Materials and Environment, Division of Environmental Science and Technology

Graduate School of Bioresources

Mie University, 1577 Kurima Machiya-cho,

Tsu-city, Mie 514-8507, Japan

http://www.geomate.org conference@geomate.org

8104: Ms. T. Listyani R.A. Listyani: GEOMATE-2018 Fullpaper: Auto Responder

geomate <noreply@jotform.com> Balas Ke: geomatejournal@gmail.com Kepada: listyanitheophila@gmail.com

18 Mei 2018 11.19

Dear Ms. T. Listyani R.A. Listyani,

Thanks for submitting full paper. We would get back to you with review results as early as possible. Please always refer your paper ID number for any communication with us.

Best regards.

conference@geomate.org

8104: Ms. T. Listyani R.A. Listyani: GEOMATE-2018 Fullpaper

Paper ID number 8104 Title/Position Ms.

Full Name T. Listyani R.A. Listyani

Paper Title TOPOGRAPHIC CONTROL ON GROUNDWATER

FLOW IN CENTRAL OF HARD WATER AREA,

WEST PROGO HILLS, INDONESIA

Presentation style

E-mail listyanitheophila@gmail.com

Journal Publication Geomate Journal (40% discount)

Upload Full Paper (Doc File) 8104-T. Listyani R.A.-full paper.docx Upload Full Paper (pdf file) 8104-T. Listyani R.A.-full paper.pdf

Upload Copyright 8104-T. Listyani R.A -copyright May 2018.jpg

Powered by **JotForm** Create your own form today!

10th June 2018: Deadline for GEOMATE-KL Full Paper Submission

Zakaria <zakaria@bio.mie-u.ac.jp> Kepada: conference@geomate.org 4 Juni 2018 16.11

Dear Authors,

Good day. This is a gentle reminder that the Deadline for full paper submission is 10th June 2018.

We appreciate online submission using the following link.

http://www.geomate.org/full-paper.html

Best regards.

Prof. Zakaria Hossain (Ph.D. Kyoto Univ. Japan)

Conference Chairman

E-mail: conference@geomate.org

10th June 2018: Deadline for GEOMATE-KL Full Paper Submission

listyani theo listyanitheophila@gmail.com> Kepada: Zakaria <zakaria@bio.mie-u.ac.jp> 5 Juni 2018 07.25

Dear editor

Actually I have sent on May 18 and you replied me for waiting of your review

Thank you

[Kutipan teks disembunyikan]

10th June 2018: Deadline for GEOMATE-KL Full Paper Submission

Zakaria <zakaria@bio.mie-u.ac.jp> Kepada: listyani theo listyanitheophila@gmail.com> 5 Juni 2018 09.40

Noted with thanks.

2018年6月5日(火) 11:00 listyani theo < listyanitheophila@gmail.com>:

[Kutipan teks disembunyikan]

Dr. Zakaria Hossain (Ph.D. Kyoto Univ.)

Professor, Mie University, Japan Editor-in-Chief, Int. J. of GEOMATE editor@geomatejournal.com http://www.koku.bio.mie-u.ac.jp/ http://www.geomatejournal.com/

〒514-8507 津市栗真町屋町1577

三重大学大学院生物資源学研究科

共生環境学専攻地域保全工学講座

国際環境保全学研究分野·教授

保世院 座狩屋 (ホセイン ザカリア) 電子メール: zakaria@bio.mie-u.ac.jp

電話番号: 059-231-9578 (内線: 9578)

ファックス:059-231-9578

GEOMATE2018-Full paper acceptance and invitation

Zakaria <zakaria@bio.mie-u.ac.jp> Kepada: listyanitheophila@gmail.com 13 Juni 2018 16.28

Dear Authors,

Thanks. GEOMATE2018-Full paper acceptance and invitation is attached for your official use.

Best regards.

Zakaria

INTERNATIONAL CONFERENCE G E M A T E

June 13, 2018

Paper ID Number: 8104 Ms. T. Listyani R.A. Listyani

E-mail: listyanitheophila@gmail.com

Subject: Acceptance of Full Paper and Invitation to the 8th International Conference on Geotechnique, Construction Materials and Environment, 20 to 22 November 2018, Kuala Lumpur, Malaysia

Dear Ms. T. Listyani R.A. Listyani,

We are pleased to inform you that after careful review and assessment, the members of the GEOMATE2018 Technical Committee have accepted your full paper entitled "TOPOGRAPHIC CONTROL ON GROUNDWATER FLOW IN CENTRAL OF HARD WATER AREA, WEST PROGO HILLS, INDONESIA" for "Oral" presentation at the conference. It is, therefore, with great pleasure that we extend our formal invitation to you to participate and present your paper at this conference. If there are additional comments/corrections from other reviewers, then we would inform you for necessary improvement later on.

Please be informed that the acceptance of your paper is conditional on your pending registration. Please make sure you register before 31st July 2018 for your papers to be included in the proceedings and to be evaluated for GEOMAT2018 Awards. This is strictly necessary for logistics and smooth operation of the conference.

Guidelines for preparing oral or poster presentations are available on conference web page: http://www.geomate.org

Should you require more information, please do not hesitate to contact us. We look forward to hearing from you soon. Please always refer paper ID number in any communication to us.

Sincerely yours,

Dr. Zakaria Hossain, Conference Chairman

8th International Conference on Geotechnique, Construction Materials and Environment,

Professor, Graduate School of Bioresources,

Mie University 1577 Kurima Machiya-cho, Tsu-city,

Mie 514-8507 Japan,

E-mail: editor@geomate.org Tel & Fax: +81-59-231-9578

Conference URL: http://www.geomate.org/

Invoice GEOMATE-KL 2018

Zakaria <zakaria@bio.mie-u.ac.jp> Kepada: listyanitheophila@gmail.com 14 Juni 2018 16.12

Dear Valued Authors.

Good afternoon. Hope, all is well with you. Due to many requests for a proforma invoice, it is attached along with this email for your official use.

The followings are eligible to register now at early bird rate:

- Authors/coauthors of accepted papers
- 2. Authors/coauthors of revised papers
- Listeners
- 4. Participants/Accompanying persons
- 5. The manuscript is not submitted yet but planning to submit it later

on.

- 6. Not attend but publish papers only
- 7. Poster presenters

Paper ID and author's name are mandatory if pay by the bank.

Thank you for your kind understanding cooperation.

Best regards.

Conference Chairman

INTERNATIONAL CONFERENCE

GEMATE

June 14, 2018

Paper ID: 8104

Ms. T. Listyani R.A. Listyani Sekolah Tinggi Teknologi Nasional Yogyakarta

E-mail: listyanitheophila@gmail.com

Paper ID number and Author's Name are mandatory if pay by bank

INVOICE

Invoice for registration fee at the 8th International Conference on Geotechnique, Construction Materials and Environment, 20 to 22 November 2018, Kuala Lumpur, Malaysia

Registration Fees / Person/Paper of 6 Page limit

	Before 31st July	1st Aug - 20 Aug.	20th Aug 10 Sept.
Authors/Participants	USD600	USD700	USD800
Students/GEOMATE Member/Accompanying Person	USD480	USD560	USD640

^{**}Please note that the above fee structures are for per person per paper (6 page limit per paper). Add 100USD/page or fraction thereof exceeding the page limit. Student means bonafide students enrolled in Malaysian universities and accompanying persons mean family members only. If your co-author or colleague are coming with you, please ask him/her to register separately. If you have two or more papers, please register separately. It is mandatory to register as author or student rate for the paper to appear in the proceedings. For YEN, Use current rate or 110yen/USD.

Mode of Payment:

1. Online: http://www.geomate.org/registration.html

* Please note that the payment is payable in full without deduction of any bank charges.

Bank Transfer (Must write Paper ID on bank document)	3. 学会登録費振込情報
BANK: Hyakugo Bank	
SWIFT CODE: HYKGJPJT	振込先金融機関名 百五銀行
A/C No. 317163	振込先支店名 栗真出張所
Beneficiary: Glorious International Jigyokai	振込先口座種別 普通
Branch: Kurima Shucchou-sho	振込先口座番号 0317163
Address: 1606-7 Kurimamachiya-cho,	振込お受取人名 グロリアス インターナシ
Tsu city, Mie 514-0102, Japan	ヨナル事業会

☐ Please send a copy of money transfer by email attachment.

Sincerely yours,

Dr. Zakaria Hossain, Conference Chairman

8th International Conference on Geotechnique, Construction Materials and Environment,

Professor, Graduate School of Bioresources, Mie University 1577 Kurima Machiya-cho, Tsu-city,

Mie 514-8507 Japan, E-mail: editor@geomate.org

Tel & Fax: +81-59-231-9578 Conference URL: http://www.geomate.org/

Editor-in-Chief International Journal of GEOMATE

ISSN: 2186-2982 (Print), 2186-2990 (Online), Japan

Gentle Reminder for Registration: GEOMATE-2018 KL Malaysia

Zakaria <zakaria@bio.mie-u.ac.jp> Kepada: conference@geomate.org

9 Juli 2018 14.44

Dear Colleagues,

Hope, all of you are well and preparing for GEOMATE-2018 Kuala Lumpur, Malaysia. This is a gentle reminder that the early bird registration deadline is **31st July 2018**. Please do not miss this early bird rate which is mandatory for proceedings publication and evaluation of best paper award.

http://www.geomate.org/registration.html

The followings are eligible to register now at early bird rate:

- 1. Authors/coauthors of accepted papers
- 2. Authors/coauthors of revised papers
- 3. Listeners
- 4. Participants/Accompanying persons
- 5. The manuscript is not submitted yet but planning to submit it later on.
- 6. Not attend but publish papers only
- 7. Poster presenters

Please see attached files for details about registration fees.

Best regards

Conference Chairman

Professor Zakaria Hossain Division of Environmental Science and Technology Graduate School of Bioresources Mie University, 1577 Kurima Machiya-cho, Tsu-city, Mie 514-8507, Japan

〒514-8507津市栗真町屋町1577

三重大学大学院生物資源学研究科 共生環境学専攻地域保全工学講座

国際環境保全学研究分野・教授

保世院 座狩屋 (ホセイン ザカリア)

電子メール:zakaria@bio.mie-u.ac.jp 電話番号:059-231-9578 (内線:9578)

ファックス: 059-231-9578

2 lampiran

Registration includes.pdf 9K

Invoice GEOMATE-2018 KL Malaysia.pdf 145K

- 1. Proceedings in USB/CD containing full paper with page number
- 2. Conference kit (Bag, pen, etc.)
- 3. Event card, Strap
- 4. Access to all events of the conference
- 5. Complimentary cocktail on 1st day
- 6. Complimentary tea/coffee, lunch, banquet on the 2nd day
- 7. Complimentary tea/coffee, lunch on the 3rd day
- 8. The program, Awards (best papers, keynotes, etc.)
- 9. Certificates (keynotes, presenters, participants etc.)
- 10. Journal paper publication fees 40% included (you need to pay 60% journal fee)

INTERNATIONAL CONFERENCE

G E

MATE

June 14, 2018

Paper ID number and Author's Name are mandatory if pay by bank

INVOICE

Invoice for registration fee at the 8th International Conference on Geotechnique, Construction Materials and Environment, 20 to 22 November 2018, Kuala Lumpur, Malaysia

Registration Fees / Person/Paper of 6 Page limit

	Before 31st July	1st Aug - 20 Aug.	20th Aug 10 Sept.
Authors/Participants	USD600	USD700	USD800
Students/GEOMATE Member/Accompanying Person	USD480	USD560	USD640

^{**}Please note that the above fee structures are for per person per paper (6 page limit per paper). Add 100USD/page or fraction thereof exceeding the page limit. Student means bonafide students enrolled in Malaysian universities and accompanying persons mean family members only. If your co-author or colleague are coming with you, please ask him/her to register separately. If you have two or more papers, please register separately. It is mandatory to register as author or student rate for the paper to appear in the proceedings. For YEN, Use current rate or 110yen/USD.

Mode of Payment:

1. Online: http://www.geomate.org/registration.html

* Please note that the payment is payable in full without deduction of any bank charges.

Bank Transfer (Must write Paper ID on bank document)	3. 学会登録費振込情報
BANK: Hyakugo Bank	
SWIFT CODE: HYKGJPJT	振込先金融機関名 百五銀行
A/C No. 317163	振込先支店名 栗真出張所
Beneficiary: Glorious International Jigyokai	振込先口座種別 普通
Branch: Kurima Shucchou-sho	振込先口座番号 0317163
Address: 1606-7 Kurimamachiya-cho,	振込お受取人名 グロリアス インターナシ
Tsu city, Mie 514-0102, Japan	ョナル事業会

☐ Please send a copy of money transfer by email attachment.

Sincerely yours,

Dr. Zakaria Hossain, Conference Chairman

8th International Conference on Geotechnique, Construction Materials and Environment, Professor, Graduate School of Bioresources, Mie University 1577 Kurima Machiya-cho, Tsu-city,

Mie 514-8507 Japan, E-mail: editor@geomate.org

Tel & Fax: +81-59-231-9578 Conference URL: http://www.geomate.org/

Editor-in-Chief International Journal of GEOMATE

ISSN: 2186-2982 (Print), 2186-2990 (Online), Japan

Only 1 week left- GEOMATE 2018 KL Malaysia Regsitration

Zakaria <zakaria@bio.mie-u.ac.jp> Kepada: conference@geomate.org 22 Juli 2018 11.35

Dear Colleagues,

Good day. This is a gentle reminder that only 1 week left for the early bird registration (Deadline: 31st July 2018). Registration is mandatory for the inclusion of papers in the conference proceedings and evaluation of best paper award.

We appreciate online registration using the following link:

http://www.geomate.org/registration.html

The followings are eligible to register now at early bird rate:

- 1. Authors/coauthors of submitted/revised/accepted papers
- 2. Authors/coauthors of papers under the review process
- 3. Listeners
- 4. Participants/Accompanying persons
- 5. The manuscript is not submitted yet but planning to submit it later on.
- 6. Not attend but publish papers only
- 7. Poster presenters
- 8. Others

Best regards.

Conference Chairman

Only 1 week left- GEOMATE 2018 KL Malaysia Regsitration

listyani theo styanitheophila@gmail.com> Kepada: Zakaria <zakaria@bio.mie-u.ac.jp>

23 Juli 2018 10.49

Dear Sir I have paid registration fee this morning Let me know if you have received my payment. Thank you

Best regard Lis Indonesia [Kutipan teks disembunyikan]

P_20180723_104502.jpg 2250K

Review Results - GEOMATE- KL 2018

GEOMATE <conference@geomate.org>

26 Juli 2018 19.02

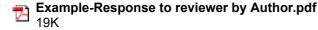
Kepada: listyanitheophila@gmail.com, nsulaksana@unpad.ac.id, boy.yoseph@unpad.ac.id, asudradjat@yahoo.com, agus.didit.haryanto@unpad.ac.id

Dear Author.

Thanks for your kind contribution. We have reviewers' comments on your paper (attached). Please send revised paper by maximum of 4 days. Please send response to reviewers by authors in separate file (example attached). We appreciate online submission using the following link.

http://www.geomate.org/revised-paper.html

Early bird registration is going on. We appreciate online registration using the following link:


http://www.geomate.org/registration.html

Yours sincerely,

Conference Chairman,

Prof. Dr. Zakaria Hossain (Ph.D. Kyoto University)

2 lampiran

Response by Authors to Reviewer's Remarks/Comments

Scale Effects of Plate Load Tests in Unsaturated Soils

Authors: Won Taek Oh and Sai Vanapalli

The authors have summarized their replies to the Reviewers' comments in this response letter in a two column format. A revised manuscript is submitted addressing all the comments to the Journal of GEOMATE for possible publication.

	Reviewer_A's Comments	Authors Response
	Creeping displacement or settlement be-	The authors appreciate the comments from
	havior of soil material is not consider to	the reviewer A; however, creeping dis-
	deign foundation, tunnel, retaining wall	placement is beyond the scope of this pa-
	etc. It will be better if you can include	per at this time.
	the soil material creeping failure mecha-	
	nism which is leading to foundation	
	failure in your paper.	
	Reviewer_B's Comments	Authors Response
1	Remove "In addition, there are different	The sentence is removed in the revised
	ground improvement methods to in-	manuscript.
	crease the bearing capacity and reduce	
	the settlements".	
2	Remove "hereafter referred to as SFs".	The phrase is removed in the revised man-
		uscript.
3	Fig. 1	Fig. 1 is modified as per the reviewer's
	777	comments.
4	This means to be well known and ac-	The authors provided the details to justify
	cepted. Why do authors need to provide this level of evidence if well understood	the estimation of average matric suction
		and for completeness of the paper.
5	and accepted? Fig. 2: not necessary	Fig. 2 and the relevant explanations are
3	Fig. 2. not necessary	removed in the revised manuscript as per
		the comments.
6	From an engineering practice point of	This sentence is removed in the revised
	view, these curves can be considered to	manuscript as per the reviewer's comment.
	be unique. (remove this sentence)	manuscript as per the reviewer's comment.
7	The critical state concept discussed	This paragraph is removed in the revised
	above can be effectively used to explain	manuscript due to the relevance to the item
	the scale effects of SFs in saturated or	·4'.
	dry sands. However, this concept may	
	not be applicable to interpret the scale	
	effects of plate size in unsaturated soils.	
	The SVS behaviors in unsaturated soils	
	are influenced both due to the footing	

	size and matric suction. The influence of matric suction however is typically ignored in conventional engineering practice.	
8	section 4.2 initial ($\underline{drained}$) tangent elastic modulus, E_i	The authors did not use the term, 'drained' because a study by authors showed that Eq. (4) can also be extended to estimate the variation of initial tangent elastic modulus for the in-situ plate load test results in unsaturated fine-grained soils. Vanapalli, S.K. and Oh, W.T. 2010. A model for predicting the modulus of elasticity of unsaturated soils using the Soil-Water Characteristic Curves. International Journal of Geotechnical Engineering, 4(4): 425-433.
9	Fig. 11 and Fig. 12 (include information about rate of loading)	Rate of loading is included in the revised figure.
10	Fig. 15(a) and (b) (include information about rate of loading)	Rates of loading are not included in the figures since the results are from bender element test.
11	Fig. 18 (Do you have measured suction values?)	The suction distribution profile in Fig. 18 is idealized behavior to explain average matric suction concept. Measured suction values were not available in the literature.

The authors appreciate the valuable comments from the Reviewers.

GEOMATE Conference Review & Evaluation

Submission Date	2018-07-24 18:09:54
Paper ID number	8104
Paper Title	Topographic Control on Groundwater Flow in Central of Hard water Area, West Progo Hills, Indonesia
i. Originality	3
ii. Quality	3
iii. Relevance	3
iv. Presentation	3
v. Recommendation	3
Total (sum of i to v)	15
Mandatory changes	Poor English. No clear justification on the problems/ objectives/ methodology/ results in the abstract/text. The figures shown are not clear.
Reviewer's E-mail (Remove before sendiing to author)	

8104: GEOMATE Revised paper: Auto Responder

geomate <noreply@jotform.com> 28 Juli 2018 13.43

Balas Ke: zakaria@bio.mie-u.ac.jp Kepada: listyanitheophila@gmail.com

Dear Mrs.,

listyanitheophila@gmail.com

Thanks. You have successfully submitted the revised paper. We would take necessary action as early as possible.

Best regards.

Prof. Dr. Zakaria Hossain

8104: GEOMATE Revised paper: Auto Responder

Paper ID number 8104
Title/Position Mrs.

Full Name T. Listyani R.A. Listyani

Revised Title TOPOGRAPHIC CONTROL ON GROUNDWATER FLOW IN

CENTRAL OF HARD WATER AREA, WEST PROGO HILLS,

INDONESIA

E-mail listyanitheophila@gmail.com

Revised Paper 8104-T. Listyani R.A.-full paper REVISION.pdf

Response to Reviewers 8104 Response by Authors.pdf

Response to reviewers: 8104 Response by Authors.pdf

Review Results - GEOMATE- KL 2018

GEOMATE <conference@geomate.org>

29 Juli 2018 14.23

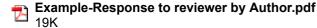
Kepada: listyanitheophila@gmail.com, nsulaksana@unpad.ac.id, boy.yoseph@unpad.ac.id, asudradjat@yahoo.com, agus.didit.haryanto@unpad.ac.id

Dear Author.

Thanks for your kind contribution. We have reviewers' comments on your paper (attached). Please send revised paper by maximum of 4 days. Please send response to reviewers by authors in separate file (example attached). We appreciate online submission using the following link.

http://www.geomate.org/revised-paper.html

Early bird registration is going on. We appreciate online registration using the following link:


http://www.geomate.org/registration.html

Yours sincerely,

Conference Chairman,

Prof. Dr. Zakaria Hossain (Ph.D. Kyoto University)

2 lampiran

Invitation to Session Chair GEOMATE

Zakaria <zakaria@bio.mie-u.ac.jp> Kepada: conference@geomate.org</zakaria@bio.mie-u.ac.jp>	2 Agustus 2018 14.12
Dear Colleagues,	
Good afternoon.	
We would like to invite you to chair a technical session for Geotechnique, Construction Materials (GEOMATE2018)-Kuala Lumpur Malaysia that will be held in Istana Hotel from Nov. 20-22, 201 to chair on any day of Nov. 21 or 22, please apply using the following link by August 30, 2018.	
http://www.geomate.org/chair.html	
We would nominate most suitable Chairs for Technical Session. Chairman's name will be shown webpage and certificate will be awarded to all Session Chairs. Welcome to join.	າ on the program,
Best regards.	
Conference Chairman	
Prof. Dr. Zakaria Hossain	

Receipt GEOMATE 2018 KL (Bank)

Zakaria <zakaria@bio.mie-u.ac.jp> Kepada: listyanitheophila@gmail.com 10 Agustus 2018 13.53

Dear Colleagues,

Thanks. I am attaching the "Receipt GEOMATE 2018 KL (Bank)" for your official use. We will handover the printed version during the conference.

Best regards.

INTERNATIONAL CONFERENCE

MATE

10 August 2018

OFFICIAL RECEIPT

GEOMATE 2018 Conference Registration Fees

Paper ID Number: 8104

Received from: Ms. T. Listyani R.A. Listyani

Email: listyanitheophila@gmail.com

Amount: 600 USD (Bank)

Sincerely yours,

Maralit

Dr. Zakaria Hossain, Conference Chairman

8th International Conference on Geotechnique, Construction Materials and Environment, Professor, Graduate School of Bioresources, Mie University 1577 Kurima Machiya-cho, Tsu-city, Mie 514-8507 Japan, E-mail: editor@geomate.org

Tel & Fax: +81-59-231-9578 Conference URL: http://www.geomate.org/

Editor-in-Chief International Journal of GEOMATE

ISSN: 2186-2982 (Print), 2186-2990 (Online), Japan

Geomate Editor <editor@geomate.org>

Kepada: Geomate Conference <conference@geomate.org>
Bcc: listyanitheophila@gmail.com

Dear Colleagues,

Good evening. Conference days are coming soon.

This is a gentle reminder that only 3 days left for registration (deadline 20th Aug. 2018). Registration is mandatory for inclusion of your paper in the proceedings and evaluation of best paper award. Please click the following link for registration.

http://www.geomate.org/registration.html

Best regards.

Conference Chairman

Gentle Reminder for Registration - GEOMATE 2018 KL

listyani theo styanitheophila@gmail.com> Kepada: editor@geomate.org

21 Agustus 2018 20.40

Dear chairman

I can't make registration by http://www.geomate/registration.html again because I've registered and paid registration fee last month on early birth registration.

[Kutipan teks disembunyikan]

Claim or Request Form:8104:T. Listyani R.A. .

geomate <noreply@jotform.com> Balas Ke: editor@geomatejournal.com Kepada: listyanitheophila@gmail.com

11 September 2018 12.33

Claim or Request Form:8104:Paid by Bank T. Listyani R.A. .

8104 Paper ID

T. Listyani R.A. . **Full Name**

Write details I'm sorry Sir, actually I don't have last name. My full name is: T.

Listyani R.A.

Reg. Fee Paid by Bank

E-mail listyanitheophila@gmail.com

CONFERENCE PAPER REPRINT IN JOURNAL

Zakaria <zakaria@bio.mie-u.ac.jp> Kepada: listyanitheophila@gmail.com 22 Oktober 2018 11.27

Dear Colleagues,

Good day. As per the request fo many authors, I am attaching the information for "CONFERENCE PAPER REPRINT IN JOURNAL".

Please see attached file for details.

Best regards.

Zakaria

International Journal of GEOMATE

A Scientific International Journal on Geotechnique, Construction Materials and Environment

• www.geomatejournal.com ● editor@geomatejournal.com ■ Tsu city, Mie, Japan

October 22, 2018

Paper ID: 8104

Ms. T. Listyani R.A. Listyani

E-mail: listyanitheophila@gmail.com

CONFERENCE PAPER REPRINT IN JOURNAL (Deadline: 30 November 2018)

Accepted paper: TOPOGRAPHIC CONTROL ON GROUNDWATER FLOW IN CENTRAL OF HARD WATER AREA, WEST PROGO HILLS, INDONESIA

Provided that you comply the following conditions:

- 1. First of all, please read the content of the journal template (download from journal website)
- Please rewrite your paper according to the instructions given in journal template
- Make sure that the paper content is checked by all authors
- 4. Please read journal submission guidelines in the following link http://www.geomatejournal.com/submission-guidlines
- 5. If you agree, then please submit journal paper using the following link (in "Reviewers Name": Please write as "Reviewed during conference") http://www.geomatejournal.com/paper-submission
- 6. Please pay reprinting fee for journal using the following link (40% discount) http://www.geomatejournal.com/payment

Sincerely yours,

Maralil

Zakaria Hossain **Editor-in-Chief**

International Journal of GEOMATE

ISSN: 2186-2990, Japan

GEOMATE Conference REVISED PAPER FOR JOURNAL

Zakaria <zakaria@bio.mie-u.ac.jp> Kepada: conference@geomate.org 23 Oktober 2018 09.33

Dear Conference Participants/Authors,

Thanks for your kind contribution. If you are interested to publish your paper in the journal, then please follow the followings. Please ignore this email if you have already submitted for the journal and paid the reprinted fee.

REVISED PAPER FOR JOURNAL

(Deadline: 30 December 2018)

- 1. First of all, please read the content of the journal template (download from journal website)
- 2. Please revise your paper according to the instructions given in the journal template
- 3. Make sure that the paper content is checked by all authors
- 4. Please read journal submission guidelines in the following link

http://www.geomatejournal.com/submission-guidlines

- 5. If you agree, then please submit journal paper using the following link (use conference ID no.)
- (in "Response to Reviewers": Please use review results during the conference"),

http://www.geomatejournal.com/revised

6. Please pay reprinting fee for the journal using the following link (40% discount, 480USD only)

http://www.geomatejournal.com/payment

7. Please confirm in submission guidelines that the regular fee is 800USD for non-paid papers.

http://www.geomatejournal.com/submission-guidlines

8. Please note that there may be several rounds of corrections before final publication in the journal and your cooperation would be highly appreciated.

Sincerely yours,

Zakaria Hossain

Editor-in-Chief

International Journal of GEOMATE

GEOMATE 2018 KL Malaysia Program

Zakaria <zakaria@bio.mie-u.ac.jp>
Kepada: conference@geomate.org

Dear Colleagues,

Hope you are well. The GEOMATE 2018 KL Malaysia Program is attached.

See you in the conferences.

Best regards.

Zakaria

PROGRAM

Edited by Zakaria Hossain Bujang B.K.Huat Vivi Anggraini Jim Shiau

GEOMATE

ISBN 978-4-9905958-8-3 C3051

GEOMATE 2018 - The Eighth International Conference on Geotechnique, Construction Materials and Environment, from 20 to 22 November 2018, Kuala Lumpur, Malaysia.

Welcome Participants

Welcome to the GEOMATE 2018 - The Eighth International Conference on Geotechnique, Construction Materials and Environment, from 20 to 22 November 2018, Kuala Lumpur, Malaysia organized by Monash University, Malaysia, Mie University Research Center for Environmental Load Reduction, The GEOMATE International Society, Useful Plant Spread Society, Glorious International, AOI Engineering, HOJUN, JCK, CosmoWinds and Beppu Construction, Japan.

We would like to thank you for your participation, especially the authors who have submitted interesting and important papers with most of them here to share their valuable experience with fellow participants. We appreciate the contribution of the session chairmen, the conference advisors and all those who have helped in one way or another to make this conference a success.

The Secretariat desk has been set up to service you so that you can participate actively in the deliberations. Do contact any of the secretariat staff for any assistance that you may require during these three days.

Please wear your name badge at all times during the conference and at the associated events as it will create a friendlier atmosphere where fellow participants can address you by name. This will also serve as an identification for your admission to the conference activities.

Kindly identify all materials and documentation handed to you, with your name, so that we can return to you if you have inadvertently forgotten to take them with you. Please check the NOTICE BOARD regularly for any changes in the program and also for messages.

On behalf of the organizing committee, we invite you to stay on after the conference to enjoy the sights of Kuala Lumpur and the nearby places of interest.

Yours Sincerely,

Prof. Zakaria Hossain, Prof. Bujang B.K. Huat, Dr. Vivi Anggraini, Dr. Jim Shiau Executive Committee

20 November 2018

GEOMATE 2018 Program Summary with ID

Tuesday, 20 November 2018:

1600-1800: Registrations

1830-1930: Welcome Cocktails

2000-2100: Special dinner for keynote speakers

Wednesday, 21 November 2018:

0830-1600: Registration

0900-0910: Opening and Welcome Address

Welcome address by Professor Dr. Bujang B. K. Huat, Department of Civil Engineering, Universiti Putra Malaysia

Keynote Session (0910-1010), Room A, Chair: Prof. Ken Kawamoto 2X30mins including Q & A

AN APPLICATION OF SCREW DRIVING SOUNDING TEST TO A SURVEY ON LIQUEFACTION POTENTIAL Naoaki SUEMASA

GEOTECHNICAL CHARACTERIZATION OF PEAT DEPOSIT IN JAPAN Hirochika HAYASHI

1010-1030: Morning Refreshments

1030-1230 Oral Session 1 (Room A) 10X12mins	1030-1230 Oral Session 2 (Room B) 10X12mins
Chair: Dr. Fauzan	Chair: Prof. Hiroyuki li
8117, 8127, 8136, 8138, 8139, 8151, 8171, 8172, 8183, 8196	8118, 8137, 8140, 8142, 8145, 8153, 8163, 8168, 8277, 8332

1230-1330 Lunch

	1330-1530 Oral Session 3 (Room A) 9X12mins	1330-1530 Oral Session 4 (Room B) 10X12mins	
Chair: Dr. Vivi Anggraini Chair: Dr. Uma Sh		Chair: Dr. Uma Shankar M.	
8101, 8111, 8112, 8115, 8116, 8120, 8121, 8122, 8212 8176, 8180, 8189, 8234, 8238, 8243, 8244, 8246, 8256, 82			

1530-1550: Afternoon Refreshments

<u>Poster Session-1</u> (hang at 1300 ~ , remove at 1700)) Q&A 1530 8113, 8114, 8119, 8125, 8128, 8131, 8132, 8133, 8134, 8135, 8143

1550-1600 Group Photo

1600-1620 Discussion on Journal Publications, Room A

1620-1820 Oral Session 5 (Room A) 10X12mins	1620-1820 Oral Session 6 (Room B) 10X12mins	
Chair: Dr. Chollada Kanjanakul	Chair: Dr. Nik Norsyahariati Nik Daud	
8198, 8213, 8224, 8236, 8249, 8250, 8261, 8299, 8324, 8330	8123, 8124, 8129, 8130, 8141, 8147, 8148, 8149, 8150, 8154	

1830-2030 Banquet & Awards Ceremony

1830 Group Photo in Banquet Hall

1930 Awards Ceremony

2030 Adjournment for the Day

GEOMATE 2018 Program Summary with ID

Thursday, 22 November 2018:

0830-1600: Registration

 0830-1030 Oral Session 7 (Room A) 10X12mins
 0830-1030 Oral Session 8 (Room B) 10X12mins

 Chair: Prof. Abdul Hakam
 Chair: Dr. Rajaraman Jambunathan

 8155, 8156, 8158, 8159, 8161, 8164, 8170, 8178, 8181, 8263
 8191, 8193, 8205, 8221, 8228, 8230, 8233, 8237, 8240, 8247

1030-1050: Morning Refreshments Poster Session-2 (hang at 0900~, remove at 1250) Q&A 1030 8160, 8162, 8165, 8169, 8211, 8217, 8241, 8254, 8257, 8273, 8300

 1050-1250 Oral Session 9 (Room A) 10X12mins
 1050-1250 Oral Session 10 (Room B) 10X12mins

 Chair: Dr. Roohollah Kalatehjari
 Chair: Dr. Nabila Shah Jilani

 8320, 8323, 8325, 8345, 8349, 8104, 8179, 8187, 8190, 8201
 8267, 8281, 8286, 8287, 8297, 8307, 8313, 8314, 8341, 8342

1250-1350 Lunch

 1350-1630 Oral Session 11 (Room A) 12X12mins
 1350-1630 Oral Session 12 (Room B) 12X12mins

 Chair:
 A/Prof. Akhila M.
 Chair:
 Dr. Tatyana Krupnova

 8109, 8258, 8259, 8264, 8274, 8284, 8290, 8293, 8295, 8306, 8312, 8315, 8358
 8157, 8197, 8215, 8218, 8220, 8242, 8251, 8253, 8270, 8272, 8301, 8340

1630-1650: Afternoon Refreshments Poster Session-3 (hang at 1300~, remove at 1700) Q&A 1630 8152, 8232, 8316, 8329

1650-1700 Discussion on Journal Publication, Closure of Conference, Room A

Friday, 23 November 2018:

1300-1700 Technical Tour

Tuesday, 20 November 2018	
1600-1800	Registrations
1830-1930	Welcome Cocktails
2000-2100	Special Dinner for Keynote Speakers

	Wednesday, 21 November 2018 Oral Sessions
0830-1600	Registration
0900-0910	Opening and Welcome Address
0910-1010	Welcome address by Professor Dr. Bujang B. K. Huat, Department of Civil Engineering, Universiti Putra Malaysia Keynote Session (0910-1010), Room A 2X30mins including Q & A Chair: Prof. Dr. Ken Kawamoto, Saitama University, Japan AN APPLICATION OF SCREW DRIVING SOUNDING TEST TO A SURVEY ON LIQUEFACTION POTENTIAL Naoaki SUEMASA GEOTECHNICAL CHARACTERIZATION OF PEAT DEPOSIT IN JAPAN Hirochika HAYASHI
1010-1030	Morning Refreshments
1030-1230	1030-1230 Oral Session 1 (Room A) Wednesday, 21 November 2018 Chair: Dr. Fauzan 10X12mins including Q & A 8117, 8127, 8136, 8138, 8139, 8151, 8171, 8172, 8183, 8196 ASSESSMENT OF QUALITY OF DIFFERENT AGGREGATES FOR ROAD CONSTRUCTION IN THE CENTRAL DIVISION OF FIJI Atinesh Vijay Prasad, Darga N Kumar DEVELOPMENT OF CARBON FIBER REINFORCED THERMOPLASTIC STRAND ROD Y Mochida, Y Imoto QUICK ASSESSMENT PROCEDURES FOR TWO STORIES BUILDING BASED ON NUMERICAL SIMULATION RESULTS Febrin Anas Ismail, Abdul Hakam, M Maisaquddus Hape, M Sofian Asmirza COMPRESSED EARTH BLOCKS WITH POWDERED GREEN MUSSEL SHELL AS PARTIAL BINDER AND PIG HAIR AS FIBER REINFORCEMENT Bernardo A. Lejano, Ram Julian Gabaldon, Patrick Jason Go, Carlos Gabriel Juan, and Michae Wong INVESTIGATION OF THE FLEXURAL STRENGTH OF COLD-FORMED STEEL C-SECTIONS USING COMPUTATIONAL AND EXPERIMENTAL METHOD Bernardo A. Lejano and Eyen James D. Ledesma STUDY ON STRENGTH ESTIMATION OF SOIL CEMENT USED IN THE EMBEDDED PILE METHOD BY ELECTRICAL RESISTIVITY MEASUREMENT Y Mochida, M Matsuura
	BY ELECTRICAL RESISTIVITY MEASUREMENT Y Mochida, M Matsuura

FINITE DIFFERENCE METHOD FOR SOLVING HEAT CONDUCTION EQUATION OF THE GRANITE Dalal Adnan Maturi

COMPRESSIVE LOADING TEST OF STEEL PILE TOP FILLED WITH CONCRETE Mutsuki Sato, Toshiharu Hirose and Yoshihiro Kimura

REGRESSION MODELING OF BREAKOUT STRENGTH OF AN EXPANSION ANCHOR BOLT AS INFLUENCED BY CONCRETE AGGREGATES

Gilford B. Estores, Wyndell A. Almenor and Charity Hope A. Gayatin

1030-1230 Oral Session 2 (Room B) Wednesday, 21 November 2018

Chair: Prof. Hiroyuki Ii 10X12mins including Q & A 8118, 8137, 8140, 8142, 8145, 8153, 8163, 8168, 8277, 8332

COMMUNITY EMPOWERMENT IN PLANTING VEGETATION TO REDUCE COASTAL ABRASION IN WEST SUMATRA

Taufika Ophiyandri, Bambang Istijono and Abdul Hakam

APPROACH TO ASSESSMENT OF SOIL AND WATER CONTAMINATION BY MINING ACTIVITIES IN MANDALAY REGION, MYANMAR

Than Htike Oo, Toshiro Hata

DEVELOPMENT OF THE MODIFIED EICP FOCUSED ON THE HIGH STRENGTH UNDER LOW CALCITE PRECIPITATION RATE

Yusui Murata, Toshiro Hata

WATER RETENTION, GAS TRANSPORT PARAMETERS, AND THERMAL PROPERTIES FOR ROADBED MATERIALS UTILIZING CONSTRUCTION DEMOLITION WASTE AND INDUSTRIAL BYPRODUCTS

1030-1230

Mohd Redzuan MOHD SAUFI, Takeshi SAITO, Taro UCHIMURA, and Ken KAWAMOTO

WATER QUALITY AND SEDIMENTATION MODELING IN SINGKARAK LAKE, WESTERN SUMATRA, INDONESIA

Harman Ajiwibowo, R.H.B. Ash-Shiddiq, Munawir B. Pratama

INTEGRATED LAND USE – FLOOD MANAGEMENT APPROACH IN URBAN SPRAWL OF LAFIA, NASARAWA STATE OF NIGERIA

Danjuma Inarigu, Zakiah Ponrahono, Mohammad Firuz Ramli and ZulfaHanan Ashaari

GEOCHEMISTRY ANALYSES OF SEA FLOOR SEDIMENTS FROM THE COASTS OF SHIKINE ISLAND IN JAPAN INDICATE AN INFLUENCE OF CO2 SEEPS TO COASTAL ENVIRONMENTS Hirosuke Hirano, Koetsu Kon, Masa-aki Yoshida, Ben Harvey, Davin H. E. Setiamarga

AN ALTERNATIVE INTEGRATED OCCUPATIONAL HEALTH, SAFETY AND ENVIRONMENTAL MANAGEMENT SYSTEM FOR SMALL AND MEDIUM-SIZED ENTERPRISES (SMEs) IN THAILAND Thepporn Jaroenroy, Chutarat Chompunth

COMPARISON OF BEARING CAPACITY IMPROVEMENT FOR SOFT CLAY USING SOIL-LIME AND SOIL-CEMENT COLUMNS

Satyajit Patel, Amruta Joshi and Shravan Sukumaran

EFFECT OF MANUFACTURED DOLOMITIC LIMESTONE SAND AS ALTERNATIVE FINE AGGREGATES FOR SHOTCRETE WET-MIX APPLICATION

Benedicto, Patrizia S., Calaywan, Juan Fidel B., Ebueng, Rio Jocelle A., and Matba, Ylam Shalev dT.

1230-1330

Lunch

1330-1530 Oral Session 3 (Room A) Wednesday, 21 November 2018

<u>Chair: Dr. Vivi Anggraini</u> 9X12mins including Q &A 8101, 8111, 8112, 8115, 8116, 8120, 8121, 8122, 8212

PULL-OUT RESISTANCE OF SINGLE PILES AND PARAMETRIC STUDY BASED ON NUMERICAL SIMULATION APPROACH (FDM) USING FLAC2D

Alex Otieno Owino, Zakaria Hossain, Jim Shiau

THE COMPARISON BETWEEN SOIL SAMPLING AND UNSATURATED SOIL HYDRAULIC DATABASE (UNSODA)

Chollada Kanjanakul

A NEW PRESSUREMETER FOR TESTING STIFF CLAY

Prof. Radhi Alzubaidi

COLLOIDAL SILICA GROUT IN SOIL IMPROVEMENT: AN EXTENSIVE REVIEW Jiji Krishnan, Shruti Shukla

THE BEHAVIOR OF UNTREATED AND TREATED EXPANSIVE SOIL AS EMBANKMENT OF FLEXIBLE PAVEMENT

Yulvi Zaika, Eko Andi Suryo

GEOTECHNICAL ASSESSMENT OF MALAYSIAN RESIDUAL SOILS FOR UTILIZATION AS CLAY LINERS IN ENGINEERED LANDFILLS

Lee Li Yong, Endene Emmanuel, Ria Purwani and Vivi Anggraini

1330-1530

INVESTIGATING THE EFFECT OF GEOTEXTILE AS REINFORCEMENT ON THE BEARING CAPACITY OF GRANULAR SOIL

John Carlo R. Samarita, and Mary Ann Q. Adajar

A COMPARATIVE STUDY ON THE USE OF WOVEN GEOTEXTILE FOR SETTLEMENT REDUCTION OF SPREAD FOOTING ON GRANULAR SOIL

Mary Ann Adajar, Maricris Gudes and Lillibelle Tan

SOIL QUALITY INDEX ANALYSIS UNDER HORTICULTURAL FARMING IN SUMANI UPPER WATERSHED

Aprisal, Bambang Istijono, Juniarti and Mimin Harianti

1330-1530 Oral Session 4 (Room B) Wednesday, 21 November 2018

<u>Chair: Dr. Uma Shankar M.</u> 10X12mins including Q &A 8176, 8180, 8189, 8234, 8238, 8243, 8244, 8246, 8256, 8260

SOME INSIGHT INTO DIRECT OBSERVATION OF HYDROLOGICAL PARAMETERS IN PEATLAND AREA OF THE SOUTH SUMATERA

Muhammad Irfan, Wijaya Mardiansyah, M. Yusup Nur Khakim, Menik Ariani, Albert Sulaiman and Iskhag Iskandar

DEVELOPING REHEATED MOTORCYCLE EXHAUST FOR PM2.5 EMISSION Wardoyo, Arinto Y.P. Dharmawan, Hari A

HYDROLOGICAL CHARACTERISTICS AND WATER MANAGEMENT IN THE AIR SUGIHAN SUBRIVER BASIN, SOUTH SUMATERA, INDONESIA

Wijaya Mardiansyah, M. Yusup Nur Khakim, Dedi Setiabudidaya, Satria J. Priatna and Iskhaq Iskandar

DEVELOPMENT OF ASSESSMENT FOR POTENTIALLY TOXIC ELEMENT CONTAMINATION INDICATOR IN CLOSED LANDFILLS AND PROSPECTIVE GEOSTATISTICAL ANALYSIS Azizi Abu Bakar, Minoru Yoneda, Nguyen Thi Thuong and Noor Zalina Mahmood

	EVALUATING POSSIBLE AVENUES FOR SOIL IMPROVEMENT BY BIOCEMENTATION IN SRI LANKA: A PRELIMINARY INVESTIGATION P.G.N. Nayanthara, A.B.N. Dassanayake, Kazunori Nakashima and Satoru Kawasaki
	UNDERSTANDING OF FIRE DISTRIBUTION IN THE SOUTH SUMATRA PEAT AREA DURING THE LAST TWO DECADES Raden Putra, Edy Sutriyono, Sabaruddin and Iskhaq Iskandar
	PADDY FIELD MAPPING USING UAV MULTI-SPECTRAL IMAGERY Rokhmatuloh, Supriatna, Tjiong Giok Pin, Ronni Ardhianto, Oka Setiawan, Iqbal Putut Ash Shidiq, Adi Wibowo and Riza Putera
1330-1530	SUITABILITY ANALYSIS OF SEAWEED (Eucheuma cottonii) BASED ON ENSO VARIABILITY IN AMAL COAST, TARAKAN ISLAND, INDONESIA Dewi Susiloningtyas, Tuty Handayani and Della Ayu Lestari
	IMPACT OF 2016 WEAK LA NIÑA MODOKI EVENT OVER THE INDONESIAN REGION Deni Okta Lestari, Edy Sutriyono, Sabaruddin, and Iskhaq Iskandar
	THE EFFECTS OF TRANSFLUTHRIN AS THE ACTIVE SUBSTANCE OF ONE PUSH AEROSOL REPELLENT ON ORGANS DAMAGE OF MICE (MUS MUSCULUS) (CASE STUDY OF LUNG, LIVER, BLOODS, AND KIDNEY) Unggul P. Juswono, Arinto Y. P. Wardoyo, Chomsin S. Widodo, and Johan A. E. Noor
1530-1550	Afternoon Refreshments
1550-1600	Group Photo
1600-1620	Discussion on Journal Publications, Room A
	1620-1820 Oral Session 5 (Room A) Wednesday, 21 November 2018 Chair: Dr. Chollada Kanjanakul 10X12mins including Q & A 8198, 8213, 8224, 8236, 8249, 8250, 8261, 8299, 8324, 8330 CORROSION CURRENT DENSITY OF MACROCELL OF HORIZONTAL STEEL BARS IN REINFORCED CONCRETE COLUMN SPECIMEN Nevy Sandra, Keiyu Kawaai and Isao Ujike
	SIMULATING LUNAR HIGH LAND ROCKS USING JAPANESE IGNEOUS ROCKS Hiroyuki Ii and Hiroshi Kanamori
	RELIABILITY ASSESSMENT OF WOODEN TRUSSES OF A HISTORICAL SCHOOL Alvin Quizon and Lessandro Estelito Garciano
1620-1820	EXPERIMENTAL STUDY ON CHEMICAL GROUTING INTO CALCIUM-CONTAINING SAND Hidetake Matsui, Yusuke Tadano and Hiroyasu Ishii
	EXPERIMENTAL STUDY ON THE EFFECT OF REBAR CORROSION ON THE MEASUREMENTS OF VARIOUS NONDESTRUCTIVE TESTS Kohei Mishima, Kenichi Kondo, Isao Ujike, Chun Pang-jo and Keiyu Kawaai
	BASIC STUDY OF CEMENT SOLIDIFICATION TECHNOLOGY FOR SOLIDIFICATION OF CESIUM ADSORBED ZEOLITE EVALUATION OF MICROSCOPIC STRUCTURE OF CEMENT SOLIDIFICATION Taisei SAKAI and Kazuhito NIWASE
	EFFECT OF CHEMICAL ADMIXTURE ON CEMENT SOLIDIFICATION OF CESIUM ADSORBED ZEOLITE Sora SUTO and Kazuhito NIWASE
	PARAMETRIC STUDY OF CES COMPOSITE COLUMNS WITH FRC USING FINITE ELEMENT
	ANALYSIS Fauzan, Ruddy Kurniawan, Zev Al Jauhari, and Nabila Felicia

ASSESSMENT TECHNIQUES FOR ALKALI SILICA REACTION DIAGNOSIS IN MASS CONCRETE **STRUCTURE** Suvimol Sujjavanich, Thanawat Meesak, Krit Won-in and Viggo Jensen BACK PROPAGATION ARTIFICIAL NEURAL NETWORK MODELING OF FLEXURAL AND COMPRESSIVE STRENGTH OF CONCRETE REINFORCED WITH POLYPROPYLENE FIBERS Stephen John C. Clemente, Edward Caezar D.C. Alimorong and Nolan C. Concha 1620-1820 Oral Session 6 (Room B) Wednesday, 21 November 2018 Chair: Dr. Nik Norsyahariati Nik Daud 10X12mins including Q & A 8123, 8124, 8129, 8130, 8141, 8147, 8148, 8149, 8150, 8154 INVESTIGATING THE EFFECTIVENESS OF RICE HUSK ASH AS STABILIZING AGENT OF **EXPANSIVE SOIL** Mary Ann Q. Adajar, Christian James P. Aquino, Joselito D. Dela Cruz II INDUSTRIAL BY-PRODUCT-BASED BINDERS FOR USE IN DEEP SOIL MIXING TECHNIQUE Mohammadjavad Yaghoubi, Arul Arulrajah, Mahdi Miri Disfani, Suksun Horpibulsuk and Stephen Darmawan QUEZON CITY SOIL PROFILE REFERENCE Joenel G. Galupino and Jonathan R. Dungca GEOTECHNICAL PROPERTIES OF SLUDGE BLENDED WITH CRUSHED CONCRETE AND **INCINERATION ASH** 1620-1820 Muhammad Rashid Iqbal, Kento Hashimoto, Shinya Tachibana, and Ken Kawamoto LIQUEFACTION ANALYSIS OF ROAD EMBANKMENT IN PIDIE JAYA DUE TO ACEH **EARTHQUAKE IN 2016** M Sofian Asmirza, Anissa Maria Hidayati and Abdul Hakam, M Maisaquddus Hape RELATIONSHIP BETWEEN CONSTRUCTION METHOD OF CRUSHED STONE PILE AND BEARING CAPACITY CHARACTERISTICS Seiya Yamazaki, Naoaki Suemasa, Kazuya ito, Makoto Hotta A STUDY ON INFLUENCE OF PENETRATION DISTANCE ON GEL TIME OF CHEMICAL GROUT Ryota Nakamura, Naoaki Suemasa, Sakamitsu Sasaki, Syunsuke Shimada A STUDY ON STRENGTH DEVELOPMENT OF SUSPENDED TYPE INJECTION MATERIAL USING MICROPARTICLES USED FOR LIQUEFACTION COUNTERMEASURE Takuya MOUE, Kentaro UEMURA, Koichi NAGAO, Naoaki SUEMASA, Kazuya ITO and Shunsuke SHIMADA, Takamitsu SASAKI BIO-INSPIRED STABILIZATION OF EMBANKMENT SOIL MEDIATING PSYCHROBACILLUS SP. AND LOW-GRADE CHEMICALS: PRELIMINARY LABORATORY INVESTIGATION Sivakumar Gowthaman, Shumpei Mitsuyama, Kazunori Nakashima, Masahiro Komatsu and Satoru Kawasaki EXPERIMENTAL STUDY ON RAINFALL INTENSITY AND SHALLOW LANDSLIDES WITH QUASI-**SATURATED STATE** Kota Okazaki, Keigo Koizumi, Kazuhiro Oda, Katuo Sasahara and Keiji Sakuradani

	Wednesday, 21 November 2018 Poster Sessions (1)
	Poster Session-1 (hang at 1300 ~, remove at 1700)) Q&A 1530
	8113, 8114, 8119, 8125, 8128, 8131, 8132, 8133, 8134, 8135, 8143
	DYNAMIC BEHAVIOUR OF RAILWAY BALLAST EXPOSED TO FLOODING CONDITION Sakdirat Kaewunruen and Tao Tang
	MECHANICAL PROPERTIES OF CONCRETE WITH RECYCLED COMPOSITE AND PLASTIC AGGREGATES Dan Li and Sakdirat Kaewunruen
	THE EFFECT OF FLOOD TO QUALITY INDEX OF SOIL PHYSICAL PROPERTIES AT THE DOWNSTREAM OF KURANJI RIVER WATERSHED, PADANG CITY Aprisal, Bambang Istijono, Taufika Ophiyandri and Nurhamidah
	ENVIRONMENTAL PARAMETERS CONTROLLING THE HABITAT OF THE BRACKISH WATER CLAM CORBICULA JAPONICA IDENTIFIED BY PREDICTIVE MODELLING Yukari Sugiyama, Mikio Nakamura , Suguru Senda and Michiko Masuda
	CYCLIC MECHANICAL PROPERTIES OF SANDY SOILS BY MIXING RECYCLED ASPHALT PAVEMENT MATERIAL Shoji Yokohama and Atsuko Sato
1300-1700	THE MANAGEMENT OF RIVERBANK MAINTAINS THE DUNE PLANT POPULATION, ESPECIALLY AN ENDANGERED SPECIES, FIMBRISTYLIS SERICEA Michiko Masuda, Sota Yotsuya and Fumitake Nishimura
	NUMERICAL ANALYSIS FOR 3D INFLUENCE OF PILE PULLING-OUT HOLES ON SURROUNDING GROUND Shuichi Kuwahara and Shinya Inazumi
	POSSIBILITY OF NEUTRAL-BASED SOLIDIFYING MATERIALS FOR PREVENTING ELUTION OF RADIOACTIVE SUBSTANCES FROM RESERVOIRS Hiroyuki Hashida, Shinya Inazumi
	LEAKAGE RISK ASSESSMENT ON SIDE IMPERVIOUS WALLS AT COASTAL LANDFILL SITES Ken-ichi Shishido and Shinya Inazumi
	DEVELOPMENT OF METAL-INSOLUBILIZING MATERIAL ON SOIL CONTAMINATED WITH HEAVY METALS USING CHEMICAL AND MINERAL ANALYSIS Shinya Inazumi, Ken-ichi Shishido and Hiroyuki Hashida
	MEASUREMENT OF CEMENT CONTENT IN CEMENT MIXED SOIL BY HYDROCHLORIC ACID HEAT REACTION METHOD Hiroshi Kubo, Toshihiko Miura and Shinya Inazumi
1830-2030	Banquet & Awards Ceremony
1830	Group Photo in Banquet Hall
1930	Awards Ceremony
2030	Adjournment for the Day

	Thursday, 22 November 2018 Oral Sessions
0830-1600	Registration
	0830-1030 Oral Session 7 (Room A) Thursday, 22 November 2018 Chair: Prof. Abdul Hakam 10X12mins including Q & A 8155, 8156, 8158, 8159, 8161, 8164, 8170, 8178, 8181, 8263
	COLLAPSE MECHANISM OF STEEL PILES BELOW HIGH-RISE BUILDING IN LIQUEFIED SOIL Moeko Matoba and Yoshihiro Kimura
	MODIFIED NATURAL FIBER ON SOIL STABILIZATION WITH LIME AND ALKALINE ACTIVATION TREATED MARINE CLAY Fatin Amirah binti Kamaruddin, Bujang B.K Huat, Vivi Anggraini and Haslinda Nahazanan
	ASSESSMENT OF LANDSLIDE HAZARD AND PREDICTION OF SLOPE FAILURES USING AREA BASED AND INDIVIDUAL BASED METHOD Mohd Taufik bin Haron and Bujang B.K Huat
	SOIL STABILIZED WITH GEOPOLYMERS FOR LOW COST AND ENVIRONMENTALLY FRIENDLY CONSTRUCTION Wisam Dheyab, Afshin Asadi, Bujang B.K. Huat, Mohd Saleh Jaafar, and Lokmane
	Abdeldjouad EFFECTS OF ALKALI-ACTIVATED WASTE BINDER IN SOIL STABILIZATION Tan Teing Teing, Bujang B.K. Huat, Sanjay Kumar Shukla, Vivi Anggraini and Haslinda Nahazanan
0830-1030	EVALUATION OF FILLER MATERIAL BEHAVIOR IN PRE-BORED PILE FOUNDATION SYSTEM DUE TO SLOW CYCLIC LATERAL LOADING IN SANDY SOIL Adhitya Yoga Purnama, Noriyuki Yasufuku and Ahmad Rifa'i
	DIAPHRAGM WALL SUPPORTED BY GROUND ANCHORS AND INCLINED STRUTS: A CASE STUDY Adnan Anwar Malik, Gorkem Dora, Ramy Derar and Majid Naeem
	AN ANALYSIS OF VERIFICATION ON THE INFLUENCE OF LIQUEFACTION ON UNDERGROUND STRUCTURE Keita Sugito, Tetsuya Okano and Ryoichi Fukagawa
	CALCULATION FORMULA FOR PULLOUT RESISTANCE EXERTED BY OPEN-WING-TYPE GROUND ANCHOR Kota Kono, Akihisa Nakahashi, and Ryoichi Fukagawa
	SETTLEMENT BEHAVIOUR OF PARIT NIPAH PEAT UNDER STATIC EMBANKMENT Adnan Zainorabidin, Mohamad Niizar Abdurahman, Azman Kassim, Mohd Firdaus Md DanAzlan and Siti Nooraiin Razali
	0830-1030 Oral Session 8 (Room B) Thursday, 22 November 2018 Chair: Dr. Rajaraman Jambunathan 10X12mins including Q & A 8191, 8193, 8205, 8221, 8228, 8230, 8233, 8237, 8240, 8247
	INVESTIGATION OF CYLINDRICAL SPECIMEN COLLAPSE BEHAVIOR USING 3D SMOOTHED-PARTICLE HYDRODYNAMIC ANALYSIS Tetsuya Okano, Yukiko Sumi, Tsutomu Matsuo, and Ryoichi Fukagawa
	CALIBRATION OF EARTH PRESSURE CELL FOR A SPECIFIED LABORATORY APPLICATION Mohammad Zahidul Islam Bhuiyan, Shanyong Wang, Scott William Sloan, Daichao Sheng and Harry Michel

	SLOPE STABILITY ANALYSIS OF FRICTIONAL FILL MATERIALS PLACED ON PURELY COHESIVE CLAY Kongkit Yingchaloenkitkhajorn
	WEST SUMATRA COASTLINE CHANGE DUE TO ABRASION PROTECTION STRUCTURES: PADANG BEACH Abdul Hakam, Junaidi, Bayu M Adji, Shafira Rahmadilla Hape
	EFFECT OF TUNNEL SIZE AND LINING THICKNESS ON TUNNEL DEFORMATION DUE TO ADJACENT PILE UNDER LOADING Prateep Lueprasert, Pornkasem Jongpradist, Kodchamon Ruangvirrojanakul and Suchatvee Suwansawat
	DISCRETE PARTICLE SIMULATION MODEL FOR SLAKING OF GEOMATERIALS INCLUDING SWELLING CLAY MINERALS Yutaka Fukumoto and Satoru Ohtsuka
0830-1030	FUNDAMENTAL STUDY OF THE EFFECT OF WATER LEVEL LOWERING IN THE GROUNDWATER DRAINAGE WORK UTILIZING SIPHON Takeshi YAMAMOTO, Yuki MINAMIGUCHI, Keigo KOIZUMI, Mitsuru KOMATSU, Kazuhiro ODA, and Adrin THOHARI
	METHODS TO MEASURE THE INITIAL QUASI-SATURATED VOLUMETRIC WATER CONTENT OF SOIL Miki Nishimura, Hiroshi Kita, Mitsuru Komatsu, Keigo Koizumi, Kazuhiro Oda and Keiji Sakuradani
	DESIGN CONCEPT FOR AN ANCHORED DIAPHRAGM WALL IN PROJECT ADP ASTANA, KAZAKHSTAN Askar Zhussupbekov, Abdulla Omarov,Gulzhanat Tanyrbergenova and Karlygash Borgekova
	SLOPE STABILITY ANALYSIS OF INTEGRATED MUNICIPAL DISPOSAL SITE BASED ON ORGANIC CONTENT CHANGE TO OPTIMIZE EMBANKMENT CAPACITY Ahmad Rifa'i, I Wayan Ariyana Basoka and Fikri Faris
1030-1050	Morning Refreshments
	1050-1250 Oral Session 9 (Room A) Thursday, 22 November 2018 Chair: Dr. Roohollah Kalatehjari 10X12mins including Q & A 8320, 8323, 8325, 8345, 8349, 8104, 8179, 8187, 8190, 8201
	THE NECESSITY OF EMPLOYING THREE DIMENSIONAL CONCEPTS IN SLOPE STABILITY ANALYSIS Roohollah Kalatehjari, Ahmad Safuan Abdul Rashid, and Mostafa Babaeian Jelodar
1050-1250	SEISMIC MICROZONATION OF SEMARANG, INDONESIA, BASED ON PROBABILISTIC AND DETERMINISTIC COMBINATION ANALYSIS W. Partono, M. Irsyam, M. Asrurifak, I.W. Sengara, A. Mulia, M. Ridwan and L. Faizal
	UNDRAINED RESPONSE OF SILTY SAND UNDER STATIC AND CYCLIC LOADING Akhila M, Dr. K Rangaswamy and Dr. N Sankar
	QUANTITATIVE ANALYSIS OF MOISTURE INDUCED ALTERATIONS ON THE DIMENSIONS OF GRAVITY FLOW EXTRACTION ELLIPSOID OF COARSE GRAINED PARTICLES IN A GLASS-BOX MODEL Uziell Boringot and Juan Fidel Calaywan
	INFLUENCE OF INITIAL CONDITIONS ON UNSATURATED GROUNDWATER FLOW MODELS Aizat Mohd Taib, Mohd Raihan Taha and Dayang Zulaika Abang Hasbollah
	TOPOGRAPHIC CONTROL ON GROUNDWATER FLOW IN CENTRAL OF HARD WATER AREA, WEST PROGO HILLS, INDONESIA T. Listyani R.A., Nana Sulaksana, Boy Yoseph CSSSA and Adjat Sudradjat

SHEAR BEHAVIOUR OF CONNECTION BETWEEN STEEL AND REINFORCED CONCRETE MEMBERS ADOPTING A NEW COLUMN BASE SYSTEM ALLOWING THE STEEL MOMENT-RESISTING FRAME TO PERFORM BEAM YIELDING MECHANISM Sachi Furukawa, Yoshihiro Kimura, Katsunori Kaneda and Akira Wada THE INFILTRATION CAPACITY OF THREE-DIAMOND PAVER TYPE IN LOW RAINFALL INTENSITY Jeanely Rangkang, Lawalenna Samang, Sakti Adji Adisasmita and Muralia Hustim 1050-1250 INFLUENCE OF FLOODS ON THE INCLINATION OF STUPAS IN AYUTTHAYA, THAILAND Yuko Ishida, Ayaka Oya, Weerakaset Suanpaga, Chalemnchai Trakulphudphong, Chaweewan Denpaiboon and Ryoichi Fukagawa EFFICIENT REPAIR SCHEDULING STRATEGY OF A MULTIPLE-SOURCE LIFELINE NETWORK USING CONSTRAINED SPANNING FOREST (CSF) Lessandro Estelito Garciano, Agnes Garciano, Mark Tolentino and Abraham Matthew Carandang 1050-1250 Oral Session 10 (Room B) Thursday, 22 November 2018 Chair: Dr. Nabila Shah Jilani 10X12mins including Q & A 8267, 8281, 8286, 8287, 8297, 8307, 8313, 8314, 8341, 8342 INTEGRATION OF SPATIAL CHARACTERISTIC TO HEALTH SERVICES: A CASE STUDY OF CHILDREN HEALTH IMPROVEMENT COMPARE TO THE ENVIRONMENTAL MANAGEMENT AT **DEPOK CITY SCALE- INDONESIA** Irene Sondang Fitrinitia, Esty Suvanti, Purnawan Junadi, Hardya Gustada THE ASSOCIATION AND DISSOCIATION OF ENVIRONMENTALLY SIGNIFICANT MINERALS ON STRENGTH PROPERTIES OF SEDIMENTS IN OCEAN ENVIRONMENT J.Rajaraman, PhD, S.Narasimha Rao, PhD CFD IMPACT OF AIR POLLUTION AND ITS MULTIFARIOUS ADVANTAGES (CASE: SUDIRMAN-THAMRIN STREET, JAKARTA) Heidy Octaviani Rachman and Lita Sari Barus SPATIO-TEMPORAL ANALYSIS OF RICE FIELD PHENOLOGY USING SENTINEL-1 IMAGE IN 1050-1250 KARAWANG REGENCY, WEST JAVA, INDONESIA Supriatna, Rokhmatuloh, Adi Wibowo, Igbal Putut Ash Shidig, Glen Putra Pratama and Laju Gandharum DEVELOPMENT OF GREEN INFRASTRUCTURE IN URBAN CATCHMENT AREA (CASE STUDY: TANJUNG BARAT SUB-DISTRICT, SOUTH JAKARTA) Dimas Ario Nugroho, Jachrizal Soemabrata, Hendricus Andy Simarmata, Dwinanti Rika Marthanty INFLUENCE OF DIESEL OIL CONTAMINANTS ON GGBS BLENDED WITH BENTONITE AND LATERITIC SOIL AS LINERS Devarangadi Manikanta, Uma Shankar M, B.R. Phanikumar IS WATER AVAILABLE IN THE PUBLIC PLACES SAFE TO DRINK IN BANGLADESH? Ijaj Mahmud Chowdhury, Istiakur Rahman, Sk. Sadman Sakib, Kazi Ismile Hossain and Shoumic Shahid Chowdhury A STUDY TO IMPROVE THE WATER QUALITY PARAMETRS OF THREE MAJOR RIVERS SURROUNDING THE CAPITAL CITY OF BANGLADESH THROUGH COAGULATION Istiakur Rahman, Sk. Sadman Sakib, Md. Rezoan Khan Nafiz, Shadman Alam, Md. Rwanakul

Islam Chowdhury

-	
	CORAL REEFS DEGRADATION PATTERN AND ITS EXPOSURE TOWARDS CLIMATE CHANGE IN BUNAKEN NATIONAL PARK
	Nafil Rabbani Attamimi, Ratna Saraswati
1050-1250	CORAL REEFS DEGRADATION PATTERN AND ITS EXPOSURE TOWARDS CLIMATE CHANGE IN BUNAKEN NATIONAL PARK
1000 1000	Nafil Rabbani Attamimi, Ratna Saraswati
1250-1350	Lunch
	1350-1630 Oral Session 11 (Room A) Thursday, 22 November 2018 Chair: A/Prof. Akhila M. 12X12mins including Q & A
	8109, 8258, 8259, 8264, 8274, 8284, 8290, 8293, 8295, 8306, 8312, 8315, 8358
	A STUDY ON LANDSLIDE AND COLLAPSE CAUSED BY THE 2016 KUMAMOTO EARTHQUAKE IN JAPAN Naomasa Honda
	STABILITY PERFORMANCE OF LOADING TEST FOR SHORT PILED RAFT FOUNDATION SYSTEM ON PEAT Sajiharjo Marto Suro, Adnan Zainorabidin, Agus Sulaeman and Ismail Bakar
	ASSESSING THE ULTIMATE BEARING CAPACITY OF FOOTING IN A TWO-LAYERED CLAYEY SOIL SYSTEM USING THE RIGID PLASTIC FINITE ELEMENT METHOD Kazuhiro KANEDA, Masamichi AOKI and Satoru OHTSUKA
	A FUNDAMENTAL EXPERIMENT ON PNEUMATIC TOMOGRAPHY OF UNSATURATED SOIL GROUND USING A HORIZONTAL ONE-DIMENSIONAL COLUMN Naoya Nishihara and Mitsuru Komatsu
	LAND SUBSIDENCE IN SUMATERA PEATLAND FOREST
	Nurhamidah Nurhamidah, Bujang Rusman, Bambang Istijono, Abdul Hakam, Ahmad Junaidi, Taufika Ophiyandri
1350-1630	THE EFFECT OF L-SHAPED SHEAR WALL ON STUDENT DORMITORY BUILDING OF ANDALAS UNIVERSITY, PADANG, INDONESIA Fauzan, F A Ismail, M W Rizki, I Fikri, and Z A Jauhari
	STRUCTURAL EVALUATION OF NURUL HAQ SHELTER BUILDING CONSTRUCTED ON LIQUEFACTION PRONE AREA IN PADANG CITY-INDONESIA Rina Yuliet, Fauzan, Abdul Hakam, Helza Riani
	TESTING OF FOAM CONCRETE FOR DEFINITION OF LAYER INTERACTING WITH SUBSOIL IN GEOTECHNICAL APPLICATIONS Marian Drusa, Jozef Vicek, Walter Scherfel and Bronislav Sedlar
	SEDIMENT FLOW CHARACTERISTICS ON SEABED SUBJECTED TO STATIONARY WAVES WITH DIAGONAL INCIDENT WAVE LOADING NEAR LINE STRUCTURES Anh Quang TRAN, Kinya MIURA, Tatsuya MATSUDA and Takahito YOSHINO
	THE SIMPLE METHOD OF SHEAR WAVE VELOCITY PROFILE FROM EXPLOSION SOURCE IN SURIN, THAILAND Pithan Pairojn
	LOADED SWELL TESTS TO ESTIMATE THE HEAVE OF THE EXPANSIVE SOIL IN INSTRUMENTED SOIL COLUMN Udukumburage RS, Gallage C and Dawes L
	MULTI-CHANNEL FIBRE BRAGG GRATING SENSORS (MC-FBGs) FOR UNIAXIAL COMPRESSIVE TEST ON LIMESTONE ELASTICITY BEHAVIOUR Isah B. W., Mohamad H. and Ahmad N. R.
	STRENGTH AND FLOWABILITY OF HIGH WATER CONTENT STABILIZED SOIL AT EARLY CURING TIME Vincentius Harry, Luky Handoko, Sumiyati Gunawan, John Tri Hatmoko and Jim Shiau

Thursday, 22 November 2018: Poster Sessions (2)

<u>Poster Session-2 (hang at 0900 ~ , remove at 1250) Q&A 1030</u> 8160, 8162, 8165, 8169, 8211, 8217, 8241, 8254, 8257, 8273, 8300

EFFECT OF CURING TEMPERATURE ON THE DEVELOPMENT OF HARD STRUCTURE OF ALKALIACTIVATED SOIL

Lokmane Abdeldjouad, Afshin Asadi, Bujang B.K.Huat, Mohd Saleh Jaafar, Wisam Dheyab, and Ahmed Giuma Elkhebu

ROLE DIFFERENCE AMONG RIVERS AFFECTED BY VOLCANIC ACTIVITIES OF MT. ONTAKE FOR WATER QUALITY OF THE NIGORIGAWA RIVER

Akiko Usami, Yoshitaka Matsumoto, Megumi Nobori, Akihiko Yagi and Eiji Iwatsuki

DENSITY DISTRIBUTIONS WITHIN CERAMIC MATERIALS SATURATED FOR USE IN SUCTION MEASUREMENT

Katsuyuki KAWAI, Shinya KIKUI, Naoki YOSHIKAWA and Takayuki FUMOTO

PREDICTION METHOD FOR LONG-TERM SETTLEMENT OF HIGLY ORGANIC SOIL USING NATURAL STRAIN

Shoji Kamao

PHYSIO-ECOLOGICAL ACTIVITY OF PHRAGMITES JAPONICA AS A GREEN INFRASTRUCTURE PLANT

Taizo Uchida, Teruo Arase, Yohei Sato and Daisuke Hayasaka

FORECAST OF PRODUCTIVE AND BIOLOGICAL EFFECTS OF METAL NANOPARTICLES ACCORDING TO TOLERANCE INDEX

Elena Sizova, Sergey Miroshnikov, Nikolai Balakirev

0900-1250

EVALUATION OF THE CALIBRATION ACCURACY OF SOIL MOISTURE USING A NEW MICROCHIP SENSOR

Mitsuru Komatsu, Masato Futagawa and Yasushi Fuwa

PHYSICAL ANALYSIS CONDITIONS AROUND MRT STATION TO BE A TRANSIT ORIENTED DEVELOPMENT AREA BY SOME INDICATORS (CASE STUDY: LEBAK BULUS MRT STATION, SOUTH JAKARTA, INDONESIA)

Doddy Apriansyah, Lita Sari Barus, Ahmad Zubair, H. Andi Simarmata, Jachrizal Sumabrata

DEVELOPMENT OF RISK EVALUATION METHOD CONSIDERING AFTERSHOCKS Sei'ichiro Fukushima, Hiroyuki Watabe and Harumi Yashiro

TEMPORAL CHANGES OF SESIMIC LOADS USING PROBABILISTIC SEISMIC HAZARD ANALYSIS WITH A RENEWAL PROCESS

Takayuki Hayashi and Harumi Yashiro

REMOVAL OF ACID ORANGE II DYE BY GRANITIC NANO-ZERO VALENT IRON (nZVI) COMPOSITE

Nur 'Aishah Zarime, Wan Zuhairi Wan Yaacob and Habibah Jamil

	Thursday, 22 November 2018: Poster Sessions (3)				
	Poster Session-3 (hang at 1300 ~ , remove at 1700) Q&A 1630 8152, 8232, 8316, 8329				
1300-1700	EFFECTS OF THRUST PROTECTING METHOD FOR BURIED PIPE USING GEOGRID GABION OF DIFFERENT SIZES Hiroyuki Araki and Daiki Hirakawa				
	EVALUATION OF BEARING CAPACITY ON SOIL-CEMENT MIXING WALL USING PERMANET PILE Koji Watanabe and Minoru Mizumoto				
	VOLUME LOSS CAUSED BY TUNNELLING IN KENNY HILL FORMATION C.M. Khoo, T. Gopalan, N.A. Abdul Rahman and H. Mohamad				
	CONSTRUCTION OF EARTH FILL STRUCTURE FOR SMALL FARM POND BY USING BHUTANESE TRADITIONAL WALL MAKING METHOD UENO Kazuhiro, NATSUKA Isamu, SATO Shushi, ONJO Norio, Karma Tshethar and Kelzang Tenzin				
1630-1650	Afternoon Refreshments				
1650-1700	Discussion on Journal Publication, Closure of Conference, Room A				

Friday, 23 November 2018					
1300-1700	Technical Tour				

GEOMATE 2019

9th International Conference on

Geotechnique, Construction Materials & Environment Tokyo, Japan

Invitation to participate

- The "International Journal of GEOMATE" is a Scientific Journal of the GEOMATE International Society that encompasses a broad area in Geotechnique, Construction Materials and Environment.
- The key objective of this journal is to promote interdisciplinary research from various regions of the globe.
- The editorial board of the journal is comprised of extensively qualified researchers, academicians, scientists from Japan and other countries of the world.
- It is peer-reviewed Journal that is published quarterly till 2015 and now monthly. All articles published in this journal are available on line.
- Contributors may download the manuscript preparation template for submitting paper or contact to the Editors-in-Chief

Scopus EBSCO VOLUME 00 Issue 00 Month, Year

International Journal of GEOMATE
(Geotechnique, Construction Materials and Environment)

THE GEOMATE INTERNATIONAL SOCIETY

http://www.geomatejournal.com/

[editor@geomatejournal.com

4183367169818523409 8104 Ms. T Listyani R A . International Journal of GEOMATE

geomate <noreply@jotform.com> Balas Ke: geomatejournal@gmail.com Kepada: listyanitheophila@gmail.com 18 November 2018 14.51

Dear Ms. T Listyani R A.,

Thanks. Your Paper ID is 4183367169818523409. Your short ID is last 5 digits. Pls use this short ID for further communication.

If you have conference ID 8104, then please that ID.

We would get back to you with review results as early as possible.

Best regards.

Prof. Dr. Zakaria Hossain (Ph.D. Kyoto University),

Editor-in-Chief, International Journal of GEOMATE (Geotechnique, Construction Materials and Environment) Professor, Mie University, Japan

E-mail: editor@geomatejournal.com

Tel & Fax: +81-59-231-9578

$4183367169818523409\ 8104\ Ms.\ T$ Listyani R A . International Journal of GEOMATE

Conference ID (if no ID then

Your Name)

8104

Title/Position Ms.

Full Name T Listyani R A .

University/Institute or Company Name

Sekolah Tinggi Teknologi Nasional Yogyakarta

Office Address Street Address: Jl. Babarsari

Street Address Line 2: Caturtunggal

City: Depok Sleman

State / Province: Yogyakarta Postal / Zip Code: 55281 Country: Indonesia

Phone Number (+62) 8164272619

E-mail listyanitheophila@gmail.com

Co-authors E-mail nsulaksana@unpad.ac.id,

(separated by comma) boy.yoseph@unpad.ac.id, asudradjat@yahoo.com

Paper Title TOPOGRAPHIC CONTROL ON GROUNDWATER

FLOW IN CENTRAL OF HARD WATER AREA,

WEST PROGO HILLS, INDONESIA

Research Area Others

Recommend Reviewer-1 (E-mail, affiliation & address)

vijaya.isnania@unpad.ac.id, Universitas Padjajaran, Teknik Geologi UNPAD Jl. Dipati Ukur 35, Bandung

40132

Recommend Reviewer-2 agus.didit.haryanto@unpad.ac.id, Universitas (name E-mail & affiliation) Padjajaran, Teknik Geologi UNPAD JI. Dipati Ukur

35, Bandung 40132

Type of Paper Research Paper

Upload Paper (Form 1) Geomate 2019 T. Listyani _ peta.pdf

Upload Info (Form 3) Form 2- GEOMATE Journal Copyright.docx

Fwd: Paper Status - Int. Journal of GEOMATE

Geomate Editor <editor@geomate.org> Kepada: Geomate Editor <editor@geomate.org> Bcc: listyanitheophila@gmail.com 23 Desember 2018 10.16

Dear Authors.

Thanks for your kind contribution.

Your paper status is given in the attached file. If you find your ID in the attached file, then please revise the paper according to the following steps (If you cannot see your ID in the attached file then it has been scheduled in Issue 53 to 57 and no action is needed).

The journal paper must be at least 6 pages long (minimum 6 pages but maximum no limit)

Abstract - make sure it contains "background, methodology, results, and conclusions" within 150 words to 250 words.

Introduction - check whether it contains research significance? The references cited in it are in order?

Results - contains details explanation? Figures and table are correctly presented?

Figures and Tables: Minimum 4 Figures and/or Tables but maximum no limit

Conclusions - whether the key findings have been addressed and future work been outlined and recommended?

List of references – has the reference format followed the template? And contains at least 10 recent references

Download the template file again http://geomatejournal.com/Download and read carefully the requirements.

Visit https://www.grammarly.com/ for possible help and do native English professional proofreading.

The author is encouraged to resubmit the paper after another revision. A second read of the paper after some weeks is helpful to find the mistakes and bugs.

Submit online using the following link: http://www.geomatejournal.com/revised

We accept online submission only.

Best regards.

Zakaria Hossain Editor-in-Chief International Journal of GEOMATE

Paper status-2018-12-23.pdf 96K

🏅 54 Issue	🌽 4636 full pper	🍶 4765 abs 292
🍶 55 Issue sp	🍶 4638 sp format	🌏 4786 sp 5 pages
≥ 56 sp	🍶 4642 sp format	J 4792 sp 5 pages
🍶 57 issue	🏅 4657-sp 5 pges	J 4799 sp 5 format
J 4503-rewrite sp	J 4661 sp format	J 4804 full paper yet
🍶 4524-redraw fig 1	🍶 4665 full paper	🍶 4808 sp 5 pages
🅉 4525-add 2 ref	🍶 4679 sp 5 pages	J 4816 sp 4
🍶 4527 sp format	🍶 4680 sp grammer	🍶 4827 5 pages
🍶 4529-ful paper yet	🌛 4690 sp 2figs	🍶 4849 sp5 t3
	J 4694 sp format	🍶 4851 full paper
4532 sp ref 3 only	🍶 4695 sp 5 pages	J 4857j-font
🍶 4538-full paper yet	J 4697 sp 5 pages	🍶 5305 ganji eng
4551sp template	J 4698 sp 5 pages	🍶 8108 5 pages
🍶 4554-figs	🍶 4700 _sp language 5 pages	🍶 8125 full paper
🍶 4566 full paper	🌛 4709 sp 7 ref	🌽 8127 ref4
🍶 4567 sp format	🌛 4726 5 pages	J 8141 5 pages
J 4576 sp 4 pages	J 4728 full paper	8170 full paper
🍶 4577 sp format	🍶 4736 full paper no	🍶 8172 update notice
4578 sp conl 5 pages	🌛 4738 sp 5 pages	🏅 8220 sp abs82
🍶 4585 sp 5 pges	🍶 4746 ful paper	🍶 8221 full paper
J 4590 sp abs 3 pages	J 4747 full paper	J 8248 Bank full paper
J 4603 full paper	🍶 4749 ful paper	🍶 8256 full paper yet
🍶 4608 full pper	🍶 4755 5 pages	8329-Ueno bank-62100yen only 1 ref make 10
J 4629 sp 4 pages	🍶 4756 format	🍶 8330 5 pags
≥ 4635 format	🍶 4759 sp abs 110	
🍶 4629 sp 4 pages	🍶 4756 format	

Fwd: Only 3 Days Left for Journal Paper Submission

Geomate Editor <editor@geomate.org> Kepada: Geomate Editor <editor@geomate.org> Bcc: listyanitheophila@gmail.com

26 Desember 2018 17.50

Dear Authors.

Good evening. Only 3 days left for journal paper submission (Deadline 30 Dec. 2018). I am attaching the necessary files along with this email for your kind references. Please use the following link to submit your revised conference paper for journal publication.

http://www.geomatejournal.com/revised

Best regards.

Zakaria Hossain Editor-in-Chief International Journal of GEOMATE

5 lampiran

Form 3-Authors information.doc 692K

Some Tips for journal paper requirements.pdf

Revised paper for Journal Publication.pdf 123K

SOME TIPS TO MEET JOURNAL REQUIREMENTS

The journal paper must be at least 6 pages long (minimum 6 pages but maximum no limit)

Abstract - make sure it contains "background, methodology, results, and conclusions" within 150 words to 250 words.

Introduction - check whether it contains research significance? The references cited in it are in order?

Results - contains details explanation? Figures and table are correctly presented? Figures and Tables: Minimum 4 Figures and/or Tables but maximum no limit Conclusions - whether the key findings have been addressed and future work been outlined and recommended?

List of references – has the reference format followed the template? And contains at least 10 recent references

Download the template file again http://geomatejournal.com/Download and read carefully the requirements.

Visit https://www.grammarly.com/ for possible help and do native English professional proofreading.

International Journal of GEOMATE

A Scientific International Journal on Geotechnique, Construction Materials and Environment

www.geomatejournal.com editor@geomatejournal.comTsu city, Mie, Japan

Oct. 23, 2018

Dear Conference Participants/Authors,

Thanks for your kind contribution. If you are interested to publish your paper in journal, then please follow the followings. Please ignore this email if you have already submitted for journal and paid the reprinted fee.

REVISED PAPER FOR JOURNAL

(Deadline: 30 December 2018)

- 1. First of all, please read the content of the journal template (download from journal website)
- 2. Please revise your paper according to the instructions given in journal template
- 3. Make sure that the paper content is checked by all authors
- 4. Please read journal submission guidelines in the following link http://www.geomatejournal.com/submission-guidlines
- 5. If you agree, then please submit journal paper using the following link (use conference ID no.) (in "Response to Reviewers": Please use review results during conference"), http://www.geomatejournal.com/revised
- 6. Please pay reprinting fee for journal using the following link (40% discount, 480USD only) http://www.geomatejournal.com/payment
- 7. Please confirm in submission guidelines that the regular fee is 800USD for non-paid papers. http://www.geomatejournal.com/submission-guidlines
- 8. Please note that there may be several rounds of corrections before final publication in journal and your cooperation would be highly appreciated.

Sincerely yours,

Maralit

Zakaria Hossain

Editor-in-Chief

International Journal of GEOMATE

ISSN: 2186-2990, Japan

Conference Paper Reprint in Journal (http://www.geomatejournal.com/revised)

Geomate Editor <editor@geomate.org> Kepada: Geomate Conference <conference@geomate.org> Bcc: listyanitheophila@gmail.com

30 Desember 2018 10.23

Dear Authors,

Advanced greetings for the Happy New year 2019. Some authors have submitted the conference paper for reprinting in the journal using journal link. Sorry for my misinformation. The correct link is revised paper submission. Please resubmit it using the following link:

http://www.geomatejournal.com/revised

In response to reviewers: Please use conference review results.

Best regards.

Prof. Dr. Zakaria Hossain Editor-in-Chief International Journal of GEOMATE

8104: Journal Revised paper

geomate <noreply@jotform.com> Balas Ke: geomatejournal@gmail.com Kepada: listyanitheophila@gmail.com 28 Januari 2019 12.23

Dear Ms. T. Listyani R.A. .,

Thanks. You have successfully submitted the revised paper. We would take necessary action as early as possible.

Best regards.

Prof. Dr. Zakaria Hossain

8104: Journal Revised paper

Paper ID number 8104

Revised Title TOPOGRAPHIC CONTROL ON GROUNDWATER

FLOW IN CENTRAL OF HARD WATER AREA,

WEST PROGO HILLS, INDONESIA

Title/Position Ms.

Full Name T. Listyani R.A. .

E-mail listyanitheophila@gmail.com

Co-authors E-mails nsulaksana@unpad.ac.id,

boy.yoseph@unpad.ac.id,asudradjat@yahoo.com

Revised Paper (Word) 8104-Listyani.docx

Response to Reviewers 8104 Response by Authors.pdf

(Form 2) Copyright Copyright Nov.pdf

(Form 3) Info Form 3-Authors information.doc

Now create your own JotForm - It's free! Create a JotForm

8104: Journal Revised paper

listyani theo styanitheophila@gmail.com>

28 Januari 2019 12.40

Kepada: Geomate Journal <geomatejournal@gmail.com>

Good afternoon Sir

Because my manuscript is big file so difficult to send in your link, let me send again by this letter. Attached I also send my payment receipt of Mandiri bank from Indonesia.

Thank you

[Kutipan teks disembunyikan]

4 lampiran

Journal Publication Fee 8104-Listyani.jpg

8104-Listyani-Acceptance Letter and Invoice (1).pdf 204K

TOPOGRAPHIC CONTROL ON GROUNDWATER FLOW IN CENTRAL OF HARD WATER AREA, WEST PROGO HILLS, INDONESIA

* T. Listyani R.A.¹, Nana Sulaksana², Boy Yoseph CSSSA³ and Adjat Sudradjat⁴
¹Geological Engineering, Padjajaran University; Sekolah Tinggi Teknologi Nasional, Yogyakarta, Indonesia;
²⁻⁴ Geological Engineering, Padjajaran University, Indonesia

*Corresponding Author, Received: 00 Nov. 2018, Revised: 00 Nov. 2018, Accepted: 00 Jan. 2019

ABSTRACT: West Progo Hills is one of some hard water area in Indonesia. It doesn't belong to the groundwater basin because it is difficult to get groundwater. Groundwater can be found in some places with a random point. Dug wells are usually found in the narrow area, as well as springs. By hydrogeological as well as hydro isotope approaches, this research wants to know about groundwater potential in West Progo Hills especially at the central part of it. The groundwater mapping has been done at Girimulyo - Kaligesing and surrounding area, to get some geologic data, water table measurement, and geomorphological data. The result of the research shows that the groundwater table usually follows the local topography. Groundwater table ranges 0.9 - 8 m below surface, it means shallow groundwater table. Dug wells are only locally found, as well as springs. Some springs often found at break of slope, it means that they're controlled by topography. Based on the groundwater table from dug wells data, groundwater is conformable to the topographic condition. The relationship between elevation and groundwater table gives correlation coefficient (r) as much as 99.99%. It means that relief is followed by groundwater level. It can be concluded that relief has a strong correlation with shallow groundwater in the research area, although the stable isotopic data doesn't support the altitude effect of it. Groundwater flows from high to low lands, such as the upper slope of hills to valleys.

Keywords: Groundwater, Topography, Spring, Dug well, Stable isotope

1. INTRODUCTION

This research has been carried out in a central part of West Progo Hills, which includes Kaligesing, Central Java Province and Girimulyo, West Progo, Yogyakarta Province, Indonesia (Fig. 1). The center of West Progo Hills is a hard water area. It is difficult to find groundwater resources. However, some dug wells and spring still can be found in random places, narrow area although in small numbers.

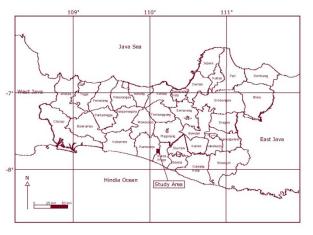


Fig 1. The research area includes in central part of West Progo Dome [1].

West Progo Hills belongs to West Progo Dome physiography [1]. This area even includes in non-groundwater basin [2]. This area is not potential for groundwater. However, in this research area, it can be found some springs and dug wells. The springs and dug wells spread in the random area, sometimes many of them gathered in a narrow area, but it may be not found in other areas.

It is necessary to study water resource at non-groundwater basin area, moreover to meet the land use changes associated with the construction of a new airport in West Progo and the development of new tourist sites in the area. The rapid expansion of land use will have a significant impact on the availability of water resource [3]. Therefore, it is important to know changes in the water resource. Global estimates of groundwater storage changes can be used to estimate that groundwater depletion trends at any region throughout the world [4].

Groundwater resource in the research area has been studied by several researchers. The potential of groundwater in relation to the lineament also analyzed to understand the influence of lineament's characteristics [5]. There is a strong correlation between the distance of lineament – spring to the numbers of spring. The springs are usually acted as a discharge of groundwater flow in the local area.

Groundwater resource of the study area can be evaluated by looking at numbers of spring as well as dug well. This potential of groundwater can also be discussed in its relationship to the topography.

The study area is hilly morphology with mainly steep slope and high dissected morphology [5]. The coarse relief is usually shown by a narrow valley, steep slope, and blunt peak hills. There are some breaks of slope feature in several locations in which the spring may appear.

Hydrogeology characteristics should be understood to know water resource. Furthermore, the hydrological model may be developed for basin management which is useful for soil and water conservation [6]. One aspect that needs to be studied is the topographic relationship model for groundwater flow patterns.

2. METHODS

The research has been done by hydrogeological and geomorphological mapping in the central of West Progo Hills. The data which have been collected include hydrogeological variables (groundwater table and spring type) and also geomorphological variables (slope, elevation, relief).

Geological equipment was used include GPS, hammer, compass, and loupe. The slope is calculated from a topographic map and also directly measured in the field.

Stable isotopic data of ¹⁸O and D have been taken to complete the analysis. These stable isotopes data have been taken from groundwater samples of selected springs and tested in Hydrology Laboratory of Indonesia National Nuclear Power Agency. The springs include 7 locations in Jonggrangan Formation and 7 locations in Old Andesite Formation aquifers.

3. REGIONAL HYDROGEOLOGY

West Progo Hills is a dome physiography which has built mainly by three big ancient volcanoes i.e. Gadjah, Ijo, and Menoreh [1]. These volcanoes produced andesitic rocks such as andesite breccia and andesite lava. These volcanic products include in Old Andesite Formation. Beside this formation, West Progo Hills is also built by a series of Tertiary sedimentary Formation such as Nanggulan, Sentolo, and Jonggrangan formation. The research area in the central part of the dome is mainly built by Jonggrangan and Old Andesite Formations. Jonggrangan Formation is consists of coral, bedded limestone, tuffaceous marl, conglomerate and calcareous sandstone [7].

The aquifer system in the study area was constructed by andesitic volcanic rocks with a thickness of more than 300 m. These rocks have locally undergone quite intensive weathering, and form a thick soil (5-10 m). Based on the characteristic layers of massive, densely fractured rock, and groundwater occupies the cracks, the

aquifer system in the study area can be classified as a cracked volcanic aquifer [8]. Groundwater in this cracked aquifer system flows as a complex flow and creates seepages. On a local scale, the groundwater level is not related in one place to another.

The existence of the basement rock of the Old Andesite Formation aquifer in stratigraphy cannot be detected because this formation is a body of intrusion and thick lava. The aquifer system in this area is interpreted as aquifers that are completely composed of volcanic rocks reach the basement. Because these volcanic rocks are exposed widely on the surface and are directly related to the atmosphere, the aquifer system can be classified as an unconfined aquifer [8].

Jonggrangan Formation mainly consists of bedded tuffaceous limestone which built an aquifer by its intergranular porosity. This formation is also densely cracked therefore secondary porosity is also well developed. This aquifer is supported by cracks and solution hole porosity, especially in coral, reef limestone.

4. RESULT AND DISCUSSION

4.1 Morphology of Research Area

The study area occupies in central West Progo Hills or core of dome physiography. It has variable morphology, mainly composed of high dissected, steep slope morphology. This area has an elevation of 187.5 to 850 m above sea level (asl), with slope developed from 5% (undulating) until more than 100% (very steep) [5].

Fig. 2 shows some lineaments of escarpments of the research area. This morphology can also be looked in the 3D block diagram as shown in Fig. 3.

Similar to Fig. 3, the morphology of the research area can be noticed from the southern side [3]. This landform shows a hard rock terrain built by hard, compacted rocks and made the rough relief.

The research wants to know about the relationship between groundwater flow and topographic aspects, therefore the observation locations have been chosen in dug wells and surroundings area (Table 1; Fig. 4). This table shows morphometric variables include elevation and slope of landform.

From the slope map on Fig. 4, it appears that the research area is dominated by a landform with fairly steep slopes. The valley between the hills usually has a relatively gentle slope and generally found locally at a relatively narrow area.

The landscape of research area is similar with Samigaluh area which is located on the east of it, which has coarse relief, strong dissected hilly morphology [9]. This area is usually affected by balanced erosion, both horizontal and vertical erosion. However, there is a poor correlation

between elevation as well as the other morphometric variable responses of a stream.

Fig. 2. Morphology of research area as seen from Jatimulyo Village, Girimulyo (top); and from Tlogoguwo Village, Kaligesing (bottom).

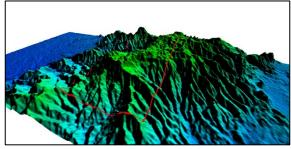


Fig. 3. Morphology of research area in 3D diagram as seen from east direction.

Table 1. Location of dug well as observation spot area.

Well	UTM co	ordinate Easting	Eleva- tion (m)	Slope (%)	Gw. table (m)
W1	402803	9146709	717	15	715.5
W2	403055	9146716	741	17	736.4
W3	402914	9146504	716	18	711.44
W4	402972	9146491	716	15	710.6
W5	403071	9146491	427	17	424.8

UTM coordinate			E1		C
Well	U I MI CO	orainate	Eleva- tion	Slope	Gw. table
***************************************	Northing	Easting	(m)	(%)	(m)
W6	403323	9144843	734	14	730.2
W7	403644	9144597	743	20	738.83
W8	403578	9144480	754	21	747.9
W9	399443	9143192	298	25	296.1
W10	399483	9143149	294	28	292.1
W11	401554	9142896	600	28	598.8
W12	401440	9142800	600	24	598.6
W13	403058	9143528	687	12	682
W14	403056	9143501	687	14	681.5
W15	402955	9143421	687	13	680.5
W16	402868	9143319	687	15	681
W17	402905	9143289	687	15	680.5
W18	403033	9143066	725	17	719.2
W19	403033	9143019	725	20	719
W20	402912	9142833	750	21	744.3
W21	403302	9143013	717.46	25	716.56
W22	402746	9139995	669.4	30	667.4
W23	402877	9139999	643.6	31	635.6
W24	403430	9138812	520.88	30	519.6
W25	403527	9138406	482.67	33	481.45
W26	403071	9138006	324.3	32	321.3
W27	399665	9138373	462.68	15	461.6
W28	399723	9138318	465.8	18	464.8
W29	399015	9137910	391.8	45	390.6
W30	399333	9137742	476.8	47	474.8
W31	399284	9137727	476.6	46	475.1
W32	400808	9143186	502	25	499.9
W33	400865	9143223	512	15	511
W34	400002	9138458	444	35	441.1
W35	399839	9138247	437	30	434.2

4.2 Groundwater Flow

Groundwater flow can be interpreted based on the local groundwater table (Fig. 5). Unfortunately, dug wells are only found locally in several locations, even many areas do not have dug wells. It means that the availability of dug wells at research area relatively small and the distribution is uneven.

Due to the availability of dug wells and local distribution, the groundwater contour pattern cannot be generated throughout the study area. This pattern of groundwater contours can only be made around dug wells areas so that the groundwater flow pattern cannot be interpreted in relation to other areas.

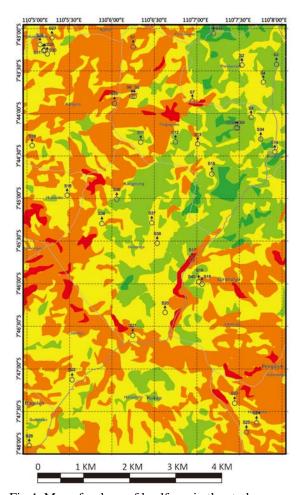


Fig 4. Map of a slope of landform in the study area.

Legend:

Spring
: Slope > 100%
: Slope 45% - 100%
: Slope 25% - 45%
: Slope 15% - 25%
: Slope 0 - 15%

Groundwater flow develops as local flow system in the area. This system usually develops along with local relief [10]. In the local flow condition, the topography usually influences the groundwater table. The water table is coincident with the ground surface in the valley, sometimes produced spring, and forms a weak replica of the topography on the hills (Fig. 6). The flow lines deliver groundwater from recharge areas to discharge areas.

Discharge of groundwater occurs in nature when water emerges from underground [7]. Most natural discharge occurs as flow into surface water bodies, flow to the surface appears as a spring. This phenomenon let the appearance of depression spring type. The depression spring is formed where the ground surface intersects the water table.

There are some depression springs found in the research area (Table 2 and Fig. 4). These springs mainly found at the steep morphology of Old

Andesite Formation, and sometimes can be met at Jonggrangan Formation rocks with single or combination type. For example, Mudal spring (S17) develops as depression, fracture, tubular spring. The tubular porosities even grow to be cavity ones.

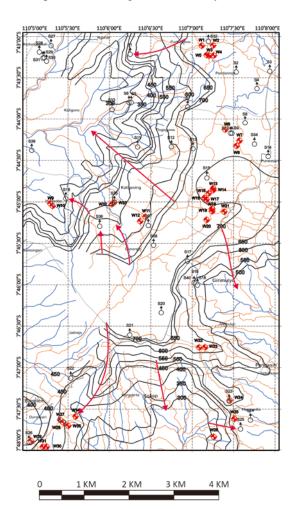


Fig. 5. Groundwater flow of shallow aquifer. Legend:

Dug well
Spring
Groundwater table contour
Groundwater flow

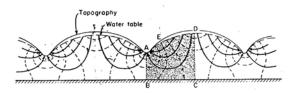


Fig. 6. Groundwater flow net in a two-dimensional vertical cross section (after Hubert, 1940 in [10]).

The depression springs prove that there are groundwater table lines cross steep cliffs or slope of

morphology. It means that actually morphology or topography also control groundwater flow. In this term, spring will be a discharge of groundwater flow. Therefore, some groundwater flow lines usually lead toward spring as a discharge of it.

4.3 Topographic Control on Groundwater Flow

There are at least two parameters of topography that can be analyzed to see their influence to groundwater flow, i.e. elevation and slope. Groundwater tends to flow from a higher hydrostatic head (groundwater table) to the lower ones. The groundwater flow is represented as a groundwater table. These relationships can be seen in Fig. 7 - 8.

Table 2. Some depression type springs in the research area.

Spring	Location	Coor	dinate	Spring
code	Location	Northing	Easting	Type
S1	Pandanrejo	401223	9146528	Depression
S2	Tlogoguwo	403580	9146131	Depression
S5	Tuk Songo	401210	9145447	Depression
S 6	Tuk Songo	401208	9145447	Depression
S 8	Tlogoguwo	403774	9145005	Depression
S 9	Tlogoguwo	403471	9144773	Depression
S10	Tlogoguwo	403468	9144755	Depression
S11	Pagertengah	401387	9144466	Depression
S12	Tlogoguwo	402137	9144468	Depression
S15	Kalilo	402925	9143777	Depression
S16	Hulosobo	399792	9143316	Depression
S17	Mudal	402496	9141923	Depression, fracture, cavity
S24	Clapar 1	403892	9138389	Depression
S27	Kaligono	399464	9146723	Depression
S28	Kaligono	399223	9146585	Depression
S29	Kaligono	399205	9146580	Depression
S30	Kaligono	399314	9146451	Depression
S31	Kaligono	399368	9146377	Depression

The relationship between elevation and the groundwater table gives a coefficient correlation value of 99.99% (Fig. 7). It means that the groundwater table always follows relief or topography. There are many variations in groundwater table depth in a peak of the hill if it is compared within the valley. Sometimes, the groundwater table is found deeper in the hilltop. But in general, the shape of the groundwater flow line in a vertical cross section will be similar to topography (see Fig. 6).

Meanwhile, the relationship between slope and

the groundwater table show worse value (Fig. 8). This relation is indicated moderate correlation by the $\rm r^2$ value of 0.2933 or coefficient correlation (r) of 54.16%. Slopes generally affect rainfall to be infiltrated or runoff. The amount of rainwater that infiltrates the slope is also an important factor to the stability of soil [11]. Slope instability in a tropical country normally triggered by the high seasonal rainfall event as well as geological factors [12].

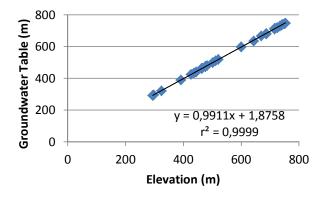


Fig 7. The relationship between elevation with the groundwater table.

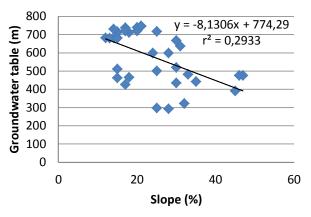


Fig. 8. The relationship between slope with the groundwater table.

Although the relationship between slope and groundwater flow only shows moderate correlation, there are many discharges of groundwater flow controlled by break of a slope of landforms. It means that landforms actually control groundwater flow because the flow usually goes toward spring as a discharge point.

Many steep slope landscapes made a break of slope in the research area. This condition triggers the occurrence of springs. Then, those springs can change the direction of groundwater flow. The groundwater flows principally from recharge to discharge area [13].

There may be changes in water resource such as groundwater pattern or its quantity. It is related to behavior and trends of dynamic change include relationship and interaction of variables in the system under different a spatial and temporal parameter such as water quality [14]. Therefore, the topographic changes may influence groundwater flow pattern.

Such as the pattern of groundwater flow in free aquifers in general, the pattern of shallow groundwater flow in the study area flows following the topography. This condition does not only occur in free aquifers, but it can occur in confined aquifers. The direction of groundwater movement in the artesian aquifer may coincide with the flow of the rivers, and the slope of the groundwater flow varies, with the large values in the groundwater discharge zone [15].

The addition of dug wells will also cause the groundwater flow to change direction. Therefore, in an urban area, groundwater flow may vary locally from time to time and can change depending abstraction. Nevertheless, the study area is not an urban area so there is rarely the addition of dug wells.

The isotopic data are evaluated to complete the analysis (Table 3). From the 40 springs found in the field, 14 well-selected springs were chosen to collect isotope data. All data were taken in dry season.

In any certain area regionally, there is an altitude effect can be determined from isotopic data of springs from some different elevations. These phenomena yield a distinct correlation exists between the ¹⁸O and D values and elevation [9]. Principally, precipitation will have a light isotope content in place with higher elevation [17] as well as shown in Jakarta Basin [18]. Unfortunately, this altitude effect in the research area is invisible (Fig. 9).

Table 3. Stable isotope data from springs.

No.	h (m)	δ^{18} O (‰)	δD (‰)
S 1	512	-7,4	-42,1
S4	747	-7,25	-45,5
S 7	665	-6,84	-42,2
S11	409	-7,34	-43,1
S13	705	-7,4	-46,6
S14	710	-6,6	-39,3
S16	340	-6,88	-41,1
S17	664	-7,39	-45,1
S20	728	-6,72	-38,9
S21	706	-7,39	-41,2
S25	437	-5,51	-34,7
S26	400	-6,45	-36,8
S29	311	-6,45	-38,8
S39	211	-6,8	-41,3

Fig. 9 explains that there is a very weak correlation between elevation and groundwater. This correlation only has r^2 very small. Nevertheless, the isotopic value usually lighter with the increase of altitude.

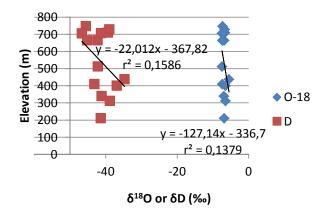


Fig. 9. The poor relationship between δ^{18} O or δ D values with elevation in the research area.

Actually, there is a narrow range of altitude in the study area. Moreover, there is a coarse relief result in an unclear difference in isotopic values. It can also be interpreted that groundwater flows in the local system, in a short time, where the evolution process hasn't been occurred to make any change of isotopic value or enrichment. The recharge may be in near area with no significant difference of altitude, therefore the value of isotopic enrichment is still unclear. Poor correlation may also be caused by a narrow altitude range and a wide range of isotope values. Therefore, the estimated elevation of the recharge zone is difficult to determine based on groundwater isotope content in the study area.

5. CONCLUSION

The topographic parameters that affect groundwater flow are elevation and slope of landscape with moderate - very strong correlation. The relationship between elevation and groundwater gives a correlation coefficient (r) of 99.99% (very strong), while slope makes r-value of 54.16% (moderate). Unfortunately, the isotopic value doesn't support this phenomenon, however, this isotopic data prove a variable value of local groundwater flow that is not controlled by altitude effect.

6. ACKNOWLEDGMENTS

The authors would like to express gratitude to STTNAS and Ministry of Research, Technology and Higher Education for funding the research by DIPA-042.06.1.401516/2018, December 5th, 2017. The award is also dedicated to UNPAD for the

encouragement to this research.

7. REFERENCES

- [1] Van Bemmelen, R.W., The Geology of Indonesia. Vol. 1A, Martinus Nijhoff, The Hague, Netherland, 1949, pp. 546, 594 602.
- [2] Geological Agency, Atlas of Groundwater Basin Indonesia, Department of Energy and Mineral Resources, Bandung, ISSN 987-602-9105-09-4, 2011, pp. 14.
- [3] Kassambara, B., Ganji, H. and Kajisa, T., Impact of Agricultural Water Allocation on The Ecosystems in The Inner Niger River Delta, International Journal of GEOMATE, Feb. 2018, Vol. 14, Issue 42, pp. 164 170.
- [4] Saber, M., Abdel-Fattah, M., Kantoush, S.A. and Sumi, T., Implications of Land Subsidence due to Groundwater Over-pumping: Monitoring Methodology using Grace Data, International Journal of GEOMATE, Jan. 2018, Vol. 14, Issue 41, pp. 52-29.
- [5] Listyani, T., Sulaksana, N., Alam, B.Y.C.S.S.S.A., Sudradjat, A. and Haryanto, A.D., Lineament Control on Spring Characteristics at Central West Progo Hills, Indonesia, International Journal of GEOMATE, Vol.14, Issue 46, 2018, pp.177-184.
- [6] Suif, Z., Yoshimura, C., Ahmad, N. and Hul, S., Distributed Model of Hydrological and Sediment Transport Process in Mekong River Basin, International Journal of GEOMATE, Feb. 2018, Vol. 14, Issue 42, pp.134 139.
- [7] Rahardjo, W., Sukandarrumidi, and Rosidi, H.M.D., Geological Map of Yogyakarta, Scale 1:100.000, Center for Geological Research and Development, Bandung, 1995.
- [8] Kusumayudha, S.B., Model Konseptual Hidrogeologi Kubah Kulonprogo berdasarkan Pemetaan dan Analisis Geometri Fraktal, Proceedings of the 39th IAGI Annual Convention and Exhibition, Lombok, 2010.
- [9] Listyani, T., Sulaksana, N., Alam, B.Y.C.S.S.S., and Sudradjat, A., Quantitative Geomorphology of Landform at Samigaluh and Surrounding Area, West Progo, Central Java, Indonesia, Proceedings of The 2nd Join

- Conference of Utsunomiya University and Universitas Padjajaran, Japan, 2017, pp. 242 247, http://hdl.handle.net/10241/10929.
- [10] Freeze, R.A. and Cherry, J.A., Groundwater, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1979, pp.193 196.
- [11] Rasool, A.M. and Kuwano, J., Influence of Matric Suction on Instability of Unsaturated Silty Soil in Unconfined Conditions, International Journal of GEOMATE, Feb. 2018, Vol. 14, Issue 42, pp. 1-7.
- [12] Ibrahim, A., Ahmad, I.K. and Taha, M.R., 3 Dimension Real-Time Images of Rainfall Infiltration into Unsaturated Soil Slope, International Journal of GEOMATE, March, 2018, Vol. 14, Issue 43, pp. 31 – 35.
- [13] Todd, D.K., Groundwater Hydrology, 2nd Ed. John Willey & Sons Inc, New York, 1980, pp. 13 17, 47 50.
- [14] Maprasit, S., Darnsawasdi, R., Rangpan, V. and Suksaroj, C., Spatial Variations of Surface Water Quality and Pollution Sources in Khlong U-Tapao River Basin, International Journal of GEOMATE, March 2018, Vol. 14, Issue 43, pp. 98 – 103.
- [15] Zaalishvili, V., Dzhgamadze, A., Gogichev, R., Dzeranov, B. and Burdzieva, O., Changes in The Qualitative Characteristics of Groundwater of The Ossetian Artesian Aquifer, International Journal of GEOMATE, Nov., 2018, Vol. 15, Issue 51, pp. 22 – 30.
- [16] Lee, K.-S., Wenner, D.B., Lee, I., Using H-and O-isotopic Data for Estimating The Relative Contributions of Rainy and Dry Season Precipitation to Groundwater: Example from Cheju Island, Korea, Journal of Hydrology, Elsevier, Vol. 222, 1999, pp. 65 74.
- [17] Clayton R.N., Friedman, I., Graf, D.L., Mayeda, T.K., Meents, W.F., and Shimp, N.F., The Origin of Saline Formation Waters, Isotopic Composition, J. Geophys. Res., 1996, 71(16), 3869 – 3882.
- [18] Listyani, T., Groundwater Flow and Its Isotopic Evolution in Deep Aquifer of Jakarta Groundwater Basin, Journal of Geological Sciences (JGS), 2016, Vol 3, No. 1.

Copyright © Int. J. of GEOMATE. All rights reserved, including the making of copies unless permission is obtained from the copyright proprietors.

Last page, both columns must be same height from top or bottom. Please do not change journal and authors information.

Please do not change format of this template

International Journal of GEOMATE

A Scientific International Journal on Geotechnique, Construction Materials and Environment

www.geomatejournal.com

editor@geomatejournal.comTsu city, Mie, Japan

17 December 2018

Ms. T Listyani R A. Sekolah Tinggi Teknologi Nasional Yogyakarta Indonesia

Paper ID: 8104-Listyani Must write Paper ID on bank document

Acceptance Letter and Tax Invoice

Your revised paper has been examined by our external referees and then re-evaluated in-house. You will be pleased to know that your revised paper has been provisionally accepted. Congratulations.

Paper ID: 8104-Listyani

TOPOGRAPHIC CONTROL ON GROUNDWATER FLOW IN CENTRAL OF HARD WATER AREA, WEST PROGO HILLS, INDONESIA

T. Listyani R.A., Nana Sulaksana, Boy Yoseph CSSSA and Adjat Sudradjat

Publication fee at the International Journal of GEOMATE

Regular (page limit 8)	800USD
Extra Page (0)	000USD
Conference Discount 40%	-320USD
Bank Fees	50USD
Total	530USD

Please note that the payment is payable in full without deduction of any bank charges

Mode of Payment:

1. Online: http://www.geomatejournal.com/payment

2. Bank Transfer (Must write Paper ID on bank document)	振込先情報
BANK: Hyakugo Bank SWIFT CODE: HYKGJPJT A/C No. 317163 A/C name, Beneficiary: Glorious International Jigyokai Branch: Kurima Shucchou-sho Bank address: 1606-7 Kurimamachiya-cho, Tsu city, Mie 514-0102, Japan Beneficiary address: #11-Glorious, 251-24 Torii-cho, Tsu city, Mie 514-8507, Japan	振込先金融機関名 百五銀行 振込先支店名 栗真出張所 振込先口座種別 普通 振込先口座番号 317163 振込お受取人名 グロリアス インタ-ナショナル事業会

Please send a copy of money transfer by email attachment.

International Journal of GEOMATE

ISSN: 2186-2990, Japan

Fwd: Revised paper for Journal Publication (Deadline: 30 December 2018)

Geomate Editor <editor@geomate.org>
Kepada: Geomate Conference <conference@geomate.org>
Bcc: listyanitheophila@gmail.com

17 Desember 2018 10.28

Dear Conference Participants/Authors,

Thanks for your kind contribution. If you are interested to publish your paper in journal, then please follow the

followings. Please ignore this email if you have already submitted for journal and paid the reprinted fee.

REVISED PAPER FOR JOURNAL

(Deadline: 30 December 2018)

- 1. First of all, please read the content of the journal template (download from journal website)
- 2. Please revise your paper according to the instructions given in journal template
- 3. Make sure that the paper content is checked and approved by all authors
- 4. Please read journal submission guidelines in the following link

http://www.geomatejournal.com/submission-guidlines

5. If you agree, then please submit journal paper using the following link (use conference ID number) (in "Response to Reviewers": Please use review results during conference"),

http://www.geomatejournal.com/revised

6. Please pay reprinting fee for journal using the following link (40% discount, 480USD only)

http://www.geomatejournal.com/payment

7. Please confirm in submission guidelines that the regular fee is 800USD for non-paid papers.

http://www.geomatejournal.com/submission-guidlines

8. Please note that there may be several rounds of corrections before final publication in journal and your cooperation would be highly appreciated.

Sincerely yours,

Zakaria Hossain

Editor-in-Chief

International Journal of GEOMATE

TOPOGRAPHIC CONTROL ON GROUNDWATER FLOW IN CENTRAL OF HARD WATER AREA, WEST PROGO HILLS, INDONESIA

* T. Listyani R.A.¹, Nana Sulaksana², Boy Yoseph CSSSA³ and Adjat Sudradjat⁴
¹Geological Engineering, Padjajaran University; Sekolah Tinggi Teknologi Nasional, Yogyakarta, Indonesia;
²⁻⁴ Geological Engineering, Padjajaran University, Indonesia

*Corresponding Author, Received: 00 Nov. 2018, Revised: 00 Nov. 2018, Accepted: 00 Jan. 2019

ABSTRACT: West Progo Hills is one of some hard water area in Indonesia. It doesn't belong to the groundwater basin because it is difficult to get groundwater. Groundwater can be found in some places with a random point. Dug wells are usually found in the narrow area, as well as springs. By hydrogeological as well as hydro isotope approaches, this research wants to know about groundwater potential in West Progo Hills especially at the central part of it. The groundwater mapping has been done at Girimulyo - Kaligesing and surrounding area, to get some geologic data, water table measurement, and geomorphological data. The result of the research shows that the groundwater table usually follows the local topography. Groundwater table ranges 0.9 - 8 m below surface, it means shallow groundwater table. Dug wells are only locally found, as well as springs. Some springs often found at break of slope, it means that they're controlled by topography. Based on the groundwater table from dug wells data, groundwater is conformable to the topographic condition. The relationship between elevation and groundwater table gives correlation coefficient (r) as much as 99.99%. It means that relief is followed by groundwater level. It can be concluded that relief has a strong correlation with shallow groundwater in the research area, although the stable isotopic data doesn't support the altitude effect of it. Groundwater flows from high to low lands, such as the upper slope of hills to valleys.

Keywords: Groundwater, Topography, Spring, Dug well, Stable isotope

1. INTRODUCTION

This research has been carried out in a central part of West Progo Hills, which includes Kaligesing, Central Java Province and Girimulyo, West Progo, Yogyakarta Province, Indonesia (Fig. 1). The center of West Progo Hills is a hard water area. It is difficult to find groundwater resources. However, some dug wells and spring still can be found in random places, narrow area although in small numbers.

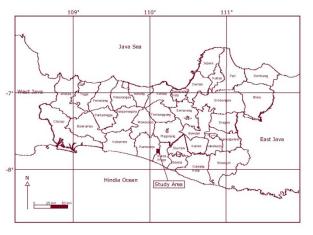


Fig 1. The research area includes in central part of West Progo Dome [1].

West Progo Hills belongs to West Progo Dome physiography [1]. This area even includes in non-groundwater basin [2]. This area is not potential for groundwater. However, in this research area, it can be found some springs and dug wells. The springs and dug wells spread in the random area, sometimes many of them gathered in a narrow area, but it may be not found in other areas.

It is necessary to study water resource at non-groundwater basin area, moreover to meet the land use changes associated with the construction of a new airport in West Progo and the development of new tourist sites in the area. The rapid expansion of land use will have a significant impact on the availability of water resource [3]. Therefore, it is important to know changes in the water resource. Global estimates of groundwater storage changes can be used to estimate that groundwater depletion trends at any region throughout the world [4].

Groundwater resource in the research area has been studied by several researchers. The potential of groundwater in relation to the lineament also analyzed to understand the influence of lineament's characteristics [5]. There is a strong correlation between the distance of lineament – spring to the numbers of spring. The springs are usually acted as a discharge of groundwater flow in the local area.

Groundwater resource of the study area can be evaluated by looking at numbers of spring as well as dug well. This potential of groundwater can also be discussed in its relationship to the topography.

The study area is hilly morphology with mainly steep slope and high dissected morphology [5]. The coarse relief is usually shown by a narrow valley, steep slope, and blunt peak hills. There are some breaks of slope feature in several locations in which the spring may appear.

Hydrogeology characteristics should be understood to know water resource. Furthermore, the hydrological model may be developed for basin management which is useful for soil and water conservation [6]. One aspect that needs to be studied is the topographic relationship model for groundwater flow patterns.

2. METHODS

The research has been done by hydrogeological and geomorphological mapping in the central of West Progo Hills. The data which have been collected include hydrogeological variables (groundwater table and spring type) and also geomorphological variables (slope, elevation, relief).

Geological equipment was used include GPS, hammer, compass, and loupe. The slope is calculated from a topographic map and also directly measured in the field.

Stable isotopic data of ¹⁸O and D have been taken to complete the analysis. These stable isotopes data have been taken from groundwater samples of selected springs and tested in Hydrology Laboratory of Indonesia National Nuclear Power Agency. The springs include 7 locations in Jonggrangan Formation and 7 locations in Old Andesite Formation aquifers.

3. REGIONAL HYDROGEOLOGY

West Progo Hills is a dome physiography which has built mainly by three big ancient volcanoes i.e. Gadjah, Ijo, and Menoreh [1]. These volcanoes produced andesitic rocks such as andesite breccia and andesite lava. These volcanic products include in Old Andesite Formation. Beside this formation, West Progo Hills is also built by a series of Tertiary sedimentary Formation such as Nanggulan, Sentolo, and Jonggrangan formation. The research area in the central part of the dome is mainly built by Jonggrangan and Old Andesite Formations. Jonggrangan Formation is consists of coral, bedded limestone, tuffaceous marl, conglomerate and calcareous sandstone [7].

The aquifer system in the study area was constructed by andesitic volcanic rocks with a thickness of more than 300 m. These rocks have locally undergone quite intensive weathering, and form a thick soil (5-10 m). Based on the characteristic layers of massive, densely fractured rock, and groundwater occupies the cracks, the

aquifer system in the study area can be classified as a cracked volcanic aquifer [8]. Groundwater in this cracked aquifer system flows as a complex flow and creates seepages. On a local scale, the groundwater level is not related in one place to another.

The existence of the basement rock of the Old Andesite Formation aquifer in stratigraphy cannot be detected because this formation is a body of intrusion and thick lava. The aquifer system in this area is interpreted as aquifers that are completely composed of volcanic rocks reach the basement. Because these volcanic rocks are exposed widely on the surface and are directly related to the atmosphere, the aquifer system can be classified as an unconfined aquifer [8].

Jonggrangan Formation mainly consists of bedded tuffaceous limestone which built an aquifer by its intergranular porosity. This formation is also densely cracked therefore secondary porosity is also well developed. This aquifer is supported by cracks and solution hole porosity, especially in coral, reef limestone.

4. RESULT AND DISCUSSION

4.1 Morphology of Research Area

The study area occupies in central West Progo Hills or core of dome physiography. It has variable morphology, mainly composed of high dissected, steep slope morphology. This area has an elevation of 187.5 to 850 m above sea level (asl), with slope developed from 5% (undulating) until more than 100% (very steep) [5].

Fig. 2 shows some lineaments of escarpments of the research area. This morphology can also be looked in the 3D block diagram as shown in Fig. 3.

Similar to Fig. 3, the morphology of the research area can be noticed from the southern side [3]. This landform shows a hard rock terrain built by hard, compacted rocks and made the rough relief.

The research wants to know about the relationship between groundwater flow and topographic aspects, therefore the observation locations have been chosen in dug wells and surroundings area (Table 1; Fig. 4). This table shows morphometric variables include elevation and slope of landform.

From the slope map on Fig. 4, it appears that the research area is dominated by a landform with fairly steep slopes. The valley between the hills usually has a relatively gentle slope and generally found locally at a relatively narrow area.

The landscape of research area is similar with Samigaluh area which is located on the east of it, which has coarse relief, strong dissected hilly morphology [9]. This area is usually affected by balanced erosion, both horizontal and vertical erosion. However, there is a poor correlation

between elevation as well as the other morphometric variable responses of a stream.

Fig. 2. Morphology of research area as seen from Jatimulyo Village, Girimulyo (top); and from Tlogoguwo Village, Kaligesing (bottom).

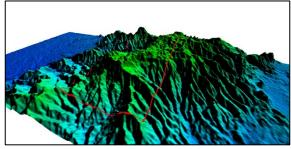


Fig. 3. Morphology of research area in 3D diagram as seen from east direction.

Table 1. Location of dug well as observation spot area.

Well	UTM co	ordinate Easting	Eleva- tion (m)	Slope (%)	Gw. table (m)
W1	402803	9146709	717	15	715.5
W2	403055	9146716	741	17	736.4
W3	402914	9146504	716	18	711.44
W4	402972	9146491	716	15	710.6
W5	403071	9146491	427	17	424.8

UTM coordinate			E1		C
Well	U I MI CO	orainate	Eleva- tion	Slope	Gw. table
***************************************	Northing	Easting	(m)	(%)	(m)
W6	403323	9144843	734	14	730.2
W7	403644	9144597	743	20	738.83
W8	403578	9144480	754	21	747.9
W9	399443	9143192	298	25	296.1
W10	399483	9143149	294	28	292.1
W11	401554	9142896	600	28	598.8
W12	401440	9142800	600	24	598.6
W13	403058	9143528	687	12	682
W14	403056	9143501	687	14	681.5
W15	402955	9143421	687	13	680.5
W16	402868	9143319	687	15	681
W17	402905	9143289	687	15	680.5
W18	403033	9143066	725	17	719.2
W19	403033	9143019	725	20	719
W20	402912	9142833	750	21	744.3
W21	403302	9143013	717.46	25	716.56
W22	402746	9139995	669.4	30	667.4
W23	402877	9139999	643.6	31	635.6
W24	403430	9138812	520.88	30	519.6
W25	403527	9138406	482.67	33	481.45
W26	403071	9138006	324.3	32	321.3
W27	399665	9138373	462.68	15	461.6
W28	399723	9138318	465.8	18	464.8
W29	399015	9137910	391.8	45	390.6
W30	399333	9137742	476.8	47	474.8
W31	399284	9137727	476.6	46	475.1
W32	400808	9143186	502	25	499.9
W33	400865	9143223	512	15	511
W34	400002	9138458	444	35	441.1
W35	399839	9138247	437	30	434.2

4.2 Groundwater Flow

Groundwater flow can be interpreted based on the local groundwater table (Fig. 5). Unfortunately, dug wells are only found locally in several locations, even many areas do not have dug wells. It means that the availability of dug wells at research area relatively small and the distribution is uneven.

Due to the availability of dug wells and local distribution, the groundwater contour pattern cannot be generated throughout the study area. This pattern of groundwater contours can only be made around dug wells areas so that the groundwater flow pattern cannot be interpreted in relation to other areas.

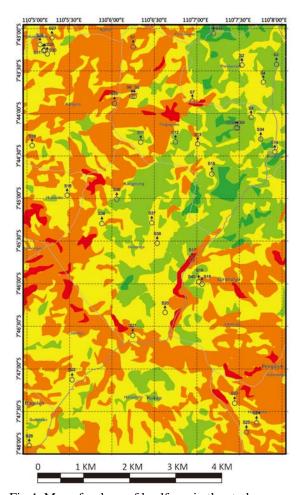


Fig 4. Map of a slope of landform in the study area.

Legend:

Spring
: Slope > 100%
: Slope 45% - 100%
: Slope 25% - 45%
: Slope 15% - 25%
: Slope 0 - 15%

Groundwater flow develops as local flow system in the area. This system usually develops along with local relief [10]. In the local flow condition, the topography usually influences the groundwater table. The water table is coincident with the ground surface in the valley, sometimes produced spring, and forms a weak replica of the topography on the hills (Fig. 6). The flow lines deliver groundwater from recharge areas to discharge areas.

Discharge of groundwater occurs in nature when water emerges from underground [7]. Most natural discharge occurs as flow into surface water bodies, flow to the surface appears as a spring. This phenomenon let the appearance of depression spring type. The depression spring is formed where the ground surface intersects the water table.

There are some depression springs found in the research area (Table 2 and Fig. 4). These springs mainly found at the steep morphology of Old

Andesite Formation, and sometimes can be met at Jonggrangan Formation rocks with single or combination type. For example, Mudal spring (S17) develops as depression, fracture, tubular spring. The tubular porosities even grow to be cavity ones.

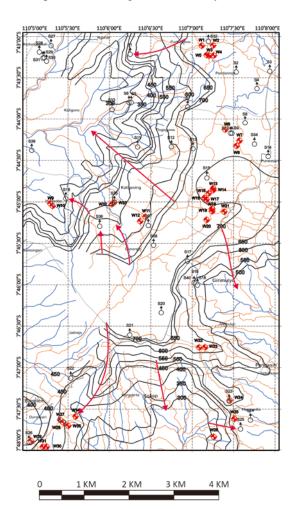


Fig. 5. Groundwater flow of shallow aquifer. Legend:

Dug well
Spring
Groundwater table contour
Groundwater flow

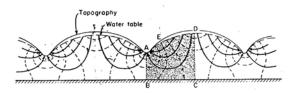


Fig. 6. Groundwater flow net in a two-dimensional vertical cross section (after Hubert, 1940 in [10]).

The depression springs prove that there are groundwater table lines cross steep cliffs or slope of

morphology. It means that actually morphology or topography also control groundwater flow. In this term, spring will be a discharge of groundwater flow. Therefore, some groundwater flow lines usually lead toward spring as a discharge of it.

4.3 Topographic Control on Groundwater Flow

There are at least two parameters of topography that can be analyzed to see their influence to groundwater flow, i.e. elevation and slope. Groundwater tends to flow from a higher hydrostatic head (groundwater table) to the lower ones. The groundwater flow is represented as a groundwater table. These relationships can be seen in Fig. 7 - 8.

Table 2. Some depression type springs in the research area.

Spring	Location	Coor	dinate	Spring
code	Location	Northing	Easting	Type
S1	Pandanrejo	401223	9146528	Depression
S2	Tlogoguwo	403580	9146131	Depression
S5	Tuk Songo	401210	9145447	Depression
S 6	Tuk Songo	401208	9145447	Depression
S 8	Tlogoguwo	403774	9145005	Depression
S 9	Tlogoguwo	403471	9144773	Depression
S10	Tlogoguwo	403468	9144755	Depression
S11	Pagertengah	401387	9144466	Depression
S12	Tlogoguwo	402137	9144468	Depression
S15	Kalilo	402925	9143777	Depression
S16	Hulosobo	399792	9143316	Depression
S17	Mudal	402496	9141923	Depression, fracture, cavity
S24	Clapar 1	403892	9138389	Depression
S27	Kaligono	399464	9146723	Depression
S28	Kaligono	399223	9146585	Depression
S29	Kaligono	399205	9146580	Depression
S30	Kaligono	399314	9146451	Depression
S31	Kaligono	399368	9146377	Depression

The relationship between elevation and the groundwater table gives a coefficient correlation value of 99.99% (Fig. 7). It means that the groundwater table always follows relief or topography. There are many variations in groundwater table depth in a peak of the hill if it is compared within the valley. Sometimes, the groundwater table is found deeper in the hilltop. But in general, the shape of the groundwater flow line in a vertical cross section will be similar to topography (see Fig. 6).

Meanwhile, the relationship between slope and

the groundwater table show worse value (Fig. 8). This relation is indicated moderate correlation by the $\rm r^2$ value of 0.2933 or coefficient correlation (r) of 54.16%. Slopes generally affect rainfall to be infiltrated or runoff. The amount of rainwater that infiltrates the slope is also an important factor to the stability of soil [11]. Slope instability in a tropical country normally triggered by the high seasonal rainfall event as well as geological factors [12].

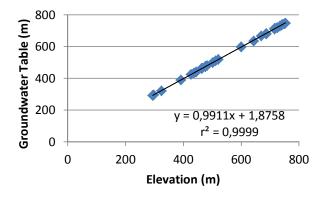


Fig 7. The relationship between elevation with the groundwater table.

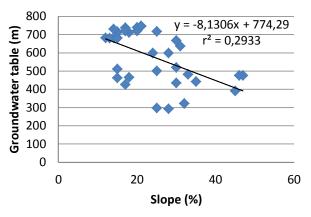


Fig. 8. The relationship between slope with the groundwater table.

Although the relationship between slope and groundwater flow only shows moderate correlation, there are many discharges of groundwater flow controlled by break of a slope of landforms. It means that landforms actually control groundwater flow because the flow usually goes toward spring as a discharge point.

Many steep slope landscapes made a break of slope in the research area. This condition triggers the occurrence of springs. Then, those springs can change the direction of groundwater flow. The groundwater flows principally from recharge to discharge area [13].

There may be changes in water resource such as groundwater pattern or its quantity. It is related to behavior and trends of dynamic change include relationship and interaction of variables in the system under different a spatial and temporal parameter such as water quality [14]. Therefore, the topographic changes may influence groundwater flow pattern.

Such as the pattern of groundwater flow in free aquifers in general, the pattern of shallow groundwater flow in the study area flows following the topography. This condition does not only occur in free aquifers, but it can occur in confined aquifers. The direction of groundwater movement in the artesian aquifer may coincide with the flow of the rivers, and the slope of the groundwater flow varies, with the large values in the groundwater discharge zone [15].

The addition of dug wells will also cause the groundwater flow to change direction. Therefore, in an urban area, groundwater flow may vary locally from time to time and can change depending abstraction. Nevertheless, the study area is not an urban area so there is rarely the addition of dug wells.

The isotopic data are evaluated to complete the analysis (Table 3). From the 40 springs found in the field, 14 well-selected springs were chosen to collect isotope data. All data were taken in dry season.

In any certain area regionally, there is an altitude effect can be determined from isotopic data of springs from some different elevations. These phenomena yield a distinct correlation exists between the ¹⁸O and D values and elevation [9]. Principally, precipitation will have a light isotope content in place with higher elevation [17] as well as shown in Jakarta Basin [18]. Unfortunately, this altitude effect in the research area is invisible (Fig. 9).

Table 3. Stable isotope data from springs.

No.	h (m)	δ^{18} O (‰)	δD (‰)
S 1	512	-7,4	-42,1
S4	747	-7,25	-45,5
S 7	665	-6,84	-42,2
S11	409	-7,34	-43,1
S13	705	-7,4	-46,6
S14	710	-6,6	-39,3
S16	340	-6,88	-41,1
S17	664	-7,39	-45,1
S20	728	-6,72	-38,9
S21	706	-7,39	-41,2
S25	437	-5,51	-34,7
S26	400	-6,45	-36,8
S29	311	-6,45	-38,8
S39	211	-6,8	-41,3

Fig. 9 explains that there is a very weak correlation between elevation and groundwater. This correlation only has r^2 very small. Nevertheless, the isotopic value usually lighter with the increase of altitude.

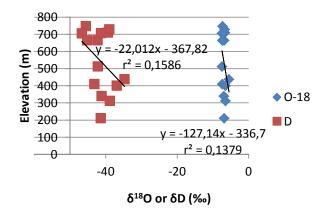


Fig. 9. The poor relationship between δ^{18} O or δ D values with elevation in the research area.

Actually, there is a narrow range of altitude in the study area. Moreover, there is a coarse relief result in an unclear difference in isotopic values. It can also be interpreted that groundwater flows in the local system, in a short time, where the evolution process hasn't been occurred to make any change of isotopic value or enrichment. The recharge may be in near area with no significant difference of altitude, therefore the value of isotopic enrichment is still unclear. Poor correlation may also be caused by a narrow altitude range and a wide range of isotope values. Therefore, the estimated elevation of the recharge zone is difficult to determine based on groundwater isotope content in the study area.

5. CONCLUSION

The topographic parameters that affect groundwater flow are elevation and slope of landscape with moderate - very strong correlation. The relationship between elevation and groundwater gives a correlation coefficient (r) of 99.99% (very strong), while slope makes r-value of 54.16% (moderate). Unfortunately, the isotopic value doesn't support this phenomenon, however, this isotopic data prove a variable value of local groundwater flow that is not controlled by altitude effect.

6. ACKNOWLEDGMENTS

The authors would like to express gratitude to STTNAS and Ministry of Research, Technology and Higher Education for funding the research by DIPA-042.06.1.401516/2018, December 5th, 2017. The award is also dedicated to UNPAD for the

encouragement to this research.

7. REFERENCES

- [1] Van Bemmelen, R.W., The Geology of Indonesia. Vol. 1A, Martinus Nijhoff, The Hague, Netherland, 1949, pp. 546, 594 602.
- [2] Geological Agency, Atlas of Groundwater Basin Indonesia, Department of Energy and Mineral Resources, Bandung, ISSN 987-602-9105-09-4, 2011, pp. 14.
- [3] Kassambara, B., Ganji, H. and Kajisa, T., Impact of Agricultural Water Allocation on The Ecosystems in The Inner Niger River Delta, International Journal of GEOMATE, Feb. 2018, Vol. 14, Issue 42, pp. 164 170.
- [4] Saber, M., Abdel-Fattah, M., Kantoush, S.A. and Sumi, T., Implications of Land Subsidence due to Groundwater Over-pumping: Monitoring Methodology using Grace Data, International Journal of GEOMATE, Jan. 2018, Vol. 14, Issue 41, pp. 52-29.
- [5] Listyani, T., Sulaksana, N., Alam, B.Y.C.S.S.S.A., Sudradjat, A. and Haryanto, A.D., Lineament Control on Spring Characteristics at Central West Progo Hills, Indonesia, International Journal of GEOMATE, Vol.14, Issue 46, 2018, pp.177-184.
- [6] Suif, Z., Yoshimura, C., Ahmad, N. and Hul, S., Distributed Model of Hydrological and Sediment Transport Process in Mekong River Basin, International Journal of GEOMATE, Feb. 2018, Vol. 14, Issue 42, pp.134 139.
- [7] Rahardjo, W., Sukandarrumidi, and Rosidi, H.M.D., Geological Map of Yogyakarta, Scale 1:100.000, Center for Geological Research and Development, Bandung, 1995.
- [8] Kusumayudha, S.B., Model Konseptual Hidrogeologi Kubah Kulonprogo berdasarkan Pemetaan dan Analisis Geometri Fraktal, Proceedings of the 39th IAGI Annual Convention and Exhibition, Lombok, 2010.
- [9] Listyani, T., Sulaksana, N., Alam, B.Y.C.S.S.S., and Sudradjat, A., Quantitative Geomorphology of Landform at Samigaluh and Surrounding Area, West Progo, Central Java, Indonesia, Proceedings of The 2nd Join

- Conference of Utsunomiya University and Universitas Padjajaran, Japan, 2017, pp. 242 247, http://hdl.handle.net/10241/10929.
- [10] Freeze, R.A. and Cherry, J.A., Groundwater, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1979, pp.193 196.
- [11] Rasool, A.M. and Kuwano, J., Influence of Matric Suction on Instability of Unsaturated Silty Soil in Unconfined Conditions, International Journal of GEOMATE, Feb. 2018, Vol. 14, Issue 42, pp. 1-7.
- [12] Ibrahim, A., Ahmad, I.K. and Taha, M.R., 3 Dimension Real-Time Images of Rainfall Infiltration into Unsaturated Soil Slope, International Journal of GEOMATE, March, 2018, Vol. 14, Issue 43, pp. 31 – 35.
- [13] Todd, D.K., Groundwater Hydrology, 2nd Ed. John Willey & Sons Inc, New York, 1980, pp. 13 17, 47 50.
- [14] Maprasit, S., Darnsawasdi, R., Rangpan, V. and Suksaroj, C., Spatial Variations of Surface Water Quality and Pollution Sources in Khlong U-Tapao River Basin, International Journal of GEOMATE, March 2018, Vol. 14, Issue 43, pp. 98 – 103.
- [15] Zaalishvili, V., Dzhgamadze, A., Gogichev, R., Dzeranov, B. and Burdzieva, O., Changes in The Qualitative Characteristics of Groundwater of The Ossetian Artesian Aquifer, International Journal of GEOMATE, Nov., 2018, Vol. 15, Issue 51, pp. 22 – 30.
- [16] Lee, K.-S., Wenner, D.B., Lee, I., Using H-and O-isotopic Data for Estimating The Relative Contributions of Rainy and Dry Season Precipitation to Groundwater: Example from Cheju Island, Korea, Journal of Hydrology, Elsevier, Vol. 222, 1999, pp. 65 74.
- [17] Clayton R.N., Friedman, I., Graf, D.L., Mayeda, T.K., Meents, W.F., and Shimp, N.F., The Origin of Saline Formation Waters, Isotopic Composition, J. Geophys. Res., 1996, 71(16), 3869 – 3882.
- [18] Listyani, T., Groundwater Flow and Its Isotopic Evolution in Deep Aquifer of Jakarta Groundwater Basin, Journal of Geological Sciences (JGS), 2016, Vol 3, No. 1.

Copyright © Int. J. of GEOMATE. All rights reserved, including the making of copies unless permission is obtained from the copyright proprietors.

Last page, both columns must be same height from top or bottom. Please do not change journal and authors information.

Please do not change format of this template

Fwd: Revised paper for Journal Publication (Deadline: 30 December 2018)

listyani theo listyanitheophila@gmail.com> Kepada: Zakaria <zakaria@bio.mie-u.ac.jp> 28 Januari 2019 11.23

Good morning Sir

This morning I have paid publication fee of Geomate Journal as much as 530 USD (full amount) (attached) plus bank fee 25 USD. Let me know if you have received of my payment.

I hope my manuscript will be reviewed and published in Geomate soon. Thank you.

Best regards,

T. Listyani R.A.

[Kutipan teks disembunyikan]

2 lampiran

Geomate Fee015.jpg

8104-T. Listyani R.A..pdf 1042K

[Kutipan teks disembunyikan]

listyani theo styanitheophila@gmail.com>

Fwd: Revised paper for Journal Publication (Deadline: 30 December 2018)

Zakaria <zakaria@bio.mie-u.ac.jp>

Kepada: listyani theo <listyanitheophila@gmail.com>

Thanks. It has been scheduled in issue 60.

-----Best Regards.

Zakaria

https://mail.google.com/mail/u/1?ik=f22e9567c8&view=pt&search=all&permmsgid=msg-f%3A1624506927787769111&simpl=msg-f%3A16245069... 1/1

60: 8104: Galley proof

geomate <noreply@jotform.com> Balas Ke: geomatejournal@gmail.com Kepada: listyanitheophila@gmail.com

11 Februari 2019 21.08

Galley proof

Paper ID number 8104 Issue number 60

Galley proof (pdf) 83-89-8104-Listyani-Aug-2019-60.pdf Galley proof (word) 83-89-8104-Listyani-Aug-2019-60.docx

(Form 2) Copyright Copyright Nov.pdf (Form 3) Info Copyright Dec.pdf

E-mail listyanitheophila@gmail.com

Powered by **JotForm**

Create your own form today!

Fwd: Galley Proof for Issue 60

Geomate Editor <editor@geomate.org>

10 Februari 2019 17.42

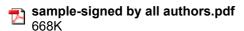
Kepada: listyanitheophila@gmail.com, nsulaksana@unpad.ac.id, boy.yoseph@unpad.ac.id, asudradjat@yahoo.com

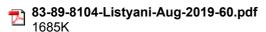
Dear Authors,

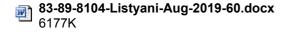
Attached herewith, please see the galley proof paper for final checking. Please note that this is the final correction and after this checking, you will not be able to change anything later on. As many grammatical errors found, we have done the following corrections:

- 1. Grammar corrected by Zakaria
- 2. Formatting correction is done by Zakaria
- 3. Figures and space including the title of figures and sections corrected by Zakaria
- 4. Please upload the galley proof file (both WORD and PDF) even no correction

Please do not change the format if any correction. We accept minor correction only (no major corrections). If any correction is needed, please do it on WORD file and then convert it to PDF file. Please send PDF version (Publishable Format including all journal information such as page numbers, vol, and issue number, date of received, revised and accepted etc.) of your galley proof paper by 4 days from the date of this email using the following link.


http://www.geomatejournal.com/galley


We accept online submission only. Please make sure that your copyright must be signed by all authors (samples attached).


Best regards.

Prof. Dr. Zakaria Hossain Editor-in-Chief International Journal of GEOMATE

3 lampiran

PUBLISHING AGREEMENT

Dear Sir,

I am required to obtain copyright of papers from authors for the term of copyright and I would be grateful if you would confirm your acceptance by signing and returning the agreement below. I will not withhold permission for any reasonable request from you to publish any part of this paper in connection with any other work by you, provided the usual acknowledgements are given regarding copyright notice and reference to the original publication.

If it is appropriate, the author's employer may sign this agreement and, in any event, the employer may reserve the right to use the paper internally or for promotional purposes only by indicating to this agreement.

The author warrants that the manuscript is the author's original work and has not been published before (if excerpts from copyrighted works are included, the author will obtain written permission from the copyright owners and show credit to the sources in the manuscript). The author also warrants that the article contains no libellous or unlawful statements and does not infringe on the rights of others.

If the work was prepared jointly the author agrees to inform co-authors of the terms of the agreement and to sign on their behalf.

Editors-in-Chief

1. Authors' Confirmation (Please answer the followings)

- Q1. Have you filled in the gap in all pages (no blank space at all)? Answer (Yes):
- Q2. Are the references inside text according to the template? Answer (Yes):
- Q3. Are all figures drawn according to the template? Answer (Yes):
- Q4. Are all figures with the same font size 10 and symbol etc? Answer (Yes):
- Q5. Does the paper length at least 6 to 8 pages or more)? Answer (Yes):
- Q6. Are the legends and values of figures 10 font size? Answer (Yes):
- Q7. Does the list of references according to the template? (Yes):
- Q8. Does the copyright signed by all authors? Answer (Yes):
- Q9. Are all equations clear and font size 10? Answer (Yes):
- Q10. Does your paper contain at least 10 recent references? Answer (Yes):
- Q11. Have you proofread English grammar by a native? Answer (Yes):
- Q12. Do you know the following free version of grammar correction? Answer (Yes): https://www.grammarly.com/office-addin/windows
- Q13. Does your paper contain at least 4 Figures and 4 Tables? Answer (Yes):
- Q14. Have you understood guidelines given on web page? Answer (Yes):

2. Authors' Biography (Please write all authors' full name and biodata here)

- a) Fauzan, Dr. Eng. is an Associate Professor in the Department of Civil Engineering, Andalas University, Indonesia. He obtained his Dr. Eng from Toyohashi University of Technology, Japan. His research interests include advanced concrete technology, retrofitting with concrete jacketing, H- Section Steel, V-Inverted Steel, Ferrocement Layers, and Seismic Behavior of Composite EWECS Column and Beam-Column Joints.. His contact E-mail is fauzanrn@yahoo.com and fauzan@ft.unand.ac.id.
- b) Febrin Anas Ismail, Dr. Eng is An associate Professor in the Department of Civil Engineering, Andalas University, Indonesia. He obtained his Dr. Eng from Yokohama National University, Japan. His research interests include Earthquake and Tsunami Hazards Project, Retrofitting using Ferrocement Layers, Bracing and Concrete Jacketing and concrete material. His contact E-Mail is febrin@yahoo.com.
- c) Rio Sandi, ST is an ex. student in the Departement of Civil Engineering, Andalas University, Indonesia. He obtained her Bachelor degree in Civil Eng. from Andalas University, Indonesia. His research includes evaluation of SFEFWT effect on concrete containing POFA. His contact E-mail is riosandi@gmail.com.
- d) Nurhasan Syah, Dr. Eng is an Associate Professor in the Department of Civil Engineering, Padang State University, Indonesia. He obtained his Dr. from Jakarta State University, Padang, Indonesia. His research interests include concrete technology and environmental engineering. His contact Email is nurhasan_s@yahoo.com.
- e) Annisa Prita Melinda, MT is a lecturer in the Department of Civil Engineering, Padang State University, Indonesia. She obtained her Master in structural Eng. from Andalas University, Indonesia. Her research includes Shear and Flexural Behavior of RC beams and evaluation of SFEFWT effect on concrete containing POFA. Her contact E-mail is annisapritamelinda@gmail.com.

3. Authors' Contributions (Please write all authors' contribution here)

Please state the contributions made by each author in the preparation, development, and publication of this manuscript.

- Fauzan: conception, specimen design, testing of specimens, analysis data, Critical reviewing and final approval of the version to be submitted.
- b) Febrin Anas Ismail: testing of specimens, analysis and interpretation of data, review the article draft.
- c) Rio Sandi: testing of specimens, analysis and interpretation of data, drafting the article.
- d) Nurhasan Syah: specimen design and testing of specimens
- e) Annisa Prita Melinda: testing of specimens, acquisition, analysis and interpretation of data.

4. Ethics (Please provide ethical issues that may arise after the publication of your paper)

This article is original and contains unpublished material. The corresponding author confirms that all of the other authors have read and approved the manuscript and no ethical issues involved.

Name of the Journal:

International Journal of GEOMATE

A Scientific International Journal on Geotechnique. Construction Materials and Environment

I hereby assign the copyright to my paper entitled,

THE EFFECTS OF STEEL FIBERS EXTRACTED FROM WASTE TYRE ON CONCRETE CONTAINING PALM OIL FUEL ASH

+note -

if the paper is rejected, this assignment is null and void

Name of author: 1. Fauzan 2. Febrin Anas Ismail, 3. Rio Sandi, 4. Nurhasan Syah, 5. Anisa Prita Melinda

Signature: 1

Date: February 1st, 2018

Please send this form duly filled and signed together with your manuscript to:

Dr. Zakaria Hossain, Editor-in-Chief Professor, Division of Environmental Science and Technology Graduate School of Bioresources, Mie University 1577 Kurima Machiya-cho Tsu-city, Mie 514-8507, Japan E-mail: zakaria@bio.mie-u.ac.jp

Tel: +81-59-231-9578 Fax: +81-59-231-9578

TOPOGRAPHIC CONTROL ON GROUNDWATER FLOW IN CENTRAL OF HARD WATER AREA, WEST PROGO HILLS, INDONESIA

* T. Listyani R.A.¹, Nana Sulaksana², Boy Yoseph CSSSA³ and Adjat Sudradjat⁴

¹Geological Engineering, Padjajaran University; Sekolah Tinggi Teknologi Nasional, Yogyakarta, Indonesia;

²⁻⁴ Geological Engineering, Padjajaran University, Indonesia

*Corresponding Author, Received: 18 Nov. 2018, Revised: 28 Jan. 2019, Accepted: 11 Feb. 2019

ABSTRACT: West Progo Hills is one of some hard water area in Indonesia. It doesn't belong to the groundwater basin because it is difficult to get groundwater. Groundwater can be found in some places with a random point. Dug wells are usually found in the narrow area, as well as springs. By hydrogeological as well as hydro isotope approaches, this research wants to know about groundwater potential in West Progo Hills especially at the central part of it. The groundwater mapping has been done at Girimulyo - Kaligesing and surrounding area, to get some geologic data, water table measurement, and geomorphological data. The result of the research shows that the groundwater table usually follows the local topography. Groundwater table ranges 0.9 – 8 m below surface, it means shallow groundwater table. Dug wells are only locally found, as well as springs. Some springs often found at break of slope, it means that they're controlled by topography. Based on the groundwater table from dug wells data, groundwater is conformable to the topographic condition. The relationship between elevation and groundwater table gives the correlation coefficient (r) as much as 99.99%. It means that relief is followed by the groundwater level. It can be concluded that relief has a strong correlation with shallow groundwater in the research area, although the stable isotopic data doesn't support the altitude effect of it. Groundwater flows from high to low lands, such as the upper slope of hills to valleys.

Keywords: Groundwater, Topography, Spring, Dug well, Stable isotope

1. INTRODUCTION

This research has been carried out in a central part of West Progo Hills, which includes Kaligesing, Central Java Province and Girimulyo, West Progo, Yogyakarta Province, Indonesia (Fig. 1). The center of West Progo Hills is a hard water area. It is difficult to find groundwater resources. However, some dug wells and spring still can be found in random places, narrow area although in small numbers.

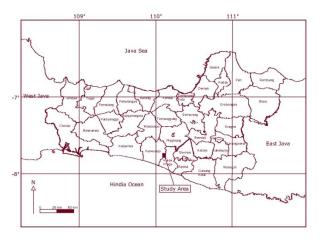


Fig 1. The research area includes in the central part of West Progo Dome [1].

West Progo Hills belongs to West Progo Dome physiography [1]. This area even includes in non-groundwater basin [2]. This area is not potential for groundwater. However, in this research area, it can be found some springs and dug wells. The springs and dug wells spread in the random area, sometimes many of them gathered in a narrow area, but it may be not found in other areas.

It is necessary to study water resource at nongroundwater basin area, moreover to meet the land use changes associated with the construction of a new airport in West Progo and the development of new tourist sites in the area. The rapid expansion of land use will have a significant impact on the availability of water resource [3]. Therefore, it is important to know changes in the water resource. Global estimates of groundwater storage changes can be used to estimate that groundwater depletion trends in any region throughout the world [4].

Groundwater resource in the research area has been studied by several researchers. The potential of groundwater in relation to the lineament also analyzed to understand the influence of lineament's characteristics [5]. There is a strong correlation between the distance of lineament – spring to the numbers of spring. The springs are usually acted as a discharge of groundwater flow in the local area.

Groundwater resource of the study area can be

evaluated by looking at numbers of spring as well as dug well. This potential of groundwater can also be discussed in its relationship to the topography.

The study area is hilly morphology with a mainly steep slope and high dissected morphology [5]. The coarse relief is usually shown by a narrow valley, steep slope, and blunt peak hills. There are some breaks of slope feature in several locations in which the spring may appear.

Hydrogeology characteristics should be understood to know water resource. Furthermore, the hydrological model may be developed for basin management which is useful for soil and water conservation [6]. One aspect that needs to be studied is the topographic relationship model for groundwater flow patterns.

2. METHODS

The research has been done by hydrogeological and geomorphological mapping in the central of West Progo Hills. The data which have been collected include hydrogeological variables (groundwater table and spring type) and also geomorphological variables (slope, elevation, relief).

Geological equipment was used include GPS, hammer, compass, and loupe. The slope is calculated from a topographic map and also directly measured in the field.

Stable isotopic data of ¹⁸O and D have been taken to complete the analysis. These stable isotopes data have been taken from groundwater samples of selected springs and tested in Hydrology Laboratory of Indonesia National Nuclear Power Agency. The springs include 7 locations in Jonggrangan Formation and 7 locations in Old Andesite Formation aquifers.

3. REGIONAL HYDROGEOLOGY

West Progo Hills is dome physiography which has built mainly by three big ancient volcanoes i.e. Gadjah, Ijo, and Menoreh [1]. These volcanoes produced andesitic rocks such as andesite breccia and andesite lava. These volcanic products include in Old Andesite Formation. Beside this formation, West Progo Hills is also built by a series of Tertiary sedimentary Formation such as Nanggulan, Sentolo, and Jonggrangan formation. The research area in the central part of the dome is mainly built by Jonggrangan and Old Andesite Formations. Jonggrangan Formation is consists of coral, bedded limestone, tuffaceous marl, conglomerate and calcareous sandstone [7].

The aquifer system in the study area was constructed by andesitic volcanic rocks with a thickness of more than 300 m. These rocks have locally undergone quite intensive weathering, and form a thick soil (5-10 m). Based on the

characteristic layers of massive, densely fractured rock, and groundwater occupies the cracks, the aquifer system in the study area can be classified as a cracked volcanic aquifer [8]. Groundwater in this cracked aquifer system flows as a complex flow and creates seepages. On a local scale, the groundwater level is not related in one place to another.

The existence of the basement rock of the Old Andesite Formation aquifer in stratigraphy cannot be detected because this formation is a body of intrusion and thick lava. The aquifer system in this area is interpreted as aquifers that are completely composed of volcanic rocks reach the basement. Because these volcanic rocks are exposed widely on the surface and are directly related to the atmosphere, the aquifer system can be classified as an unconfined aquifer [8].

Jonggrangan Formation mainly consists of bedded tuffaceous limestone which built an aquifer by its intergranular porosity. This formation is also densely cracked therefore secondary porosity is also well developed. This aquifer is supported by cracks and solution hole porosity, especially in coral, reef limestone.

4. RESULT AND DISCUSSION

4.1 Morphology of Research Area

The study area occupies in central West Progo Hills or core of dome physiography. It has variable morphology, mainly composed of high dissected, steep slope morphology. This area has an elevation of 187.5 to 850 m above sea level (asl), with slope developed from 5% (undulating) until more than 100% (very steep) [5].

Fig. 2 shows some lineaments of escarpments of the research area. This morphology can also be looked in the 3D block diagram as shown in Fig. 3.

Similar to Fig. 3, the morphology of the research area can be noticed from the southern side [3]. This landform shows a hard rock terrain built by hard, compacted rocks and made the rough relief.

The research wants to know about the relationship between groundwater flow and topographic aspects, therefore the observation locations have been chosen in dug wells and surroundings area (Table 1; Fig. 4). This table shows morphometric variables include the elevation and slope of landform.

From the slope map on Fig. 4, it appears that the research area is dominated by a landform with fairly steep slopes. The valley between the hills usually has a relatively gentle slope and generally found locally at a relatively narrow area.

The landscape of research area is similar to Samigaluh area which is located on the east of it, which has coarse relief, strong dissected hilly morphology [9]. This area is usually affected by

balanced erosion, both horizontal and vertical erosion. However, there is a poor correlation between elevation as well as the other morphometric variable responses of a stream.

Fig. 2. Morphology of research area as seen from Jatimulyo Village, Girimulyo (top); and from Tlogoguwo Village, Kaligesing (bottom).

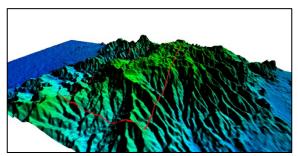


Fig. 3. Morphology of research area in the 3D diagram as seen from east direction.

Table 1. Location of dug well as observation spot area.

	UTM coordinate		Eleva-	Slope	Gw.
Well	Northing	Easting	tion (m)	(%)	table (m)
W1	402803	9146709	717	15	715.5
W2	403055	9146716	741	17	736.4
W3	402914	9146504	716	18	711.44
W4	402972	9146491	716	15	710.6

W5	403071	9146491	427	17	424.8
	UTM co	ordinate	Eleva-	Slope	Gw.
Well	Northing	Easting	tion (m)	(%)	table (m)
W6	403323	9144843	734	14	730.2
W7	403523	9144597	743	20	738.83
W8	403578	9144480	754	21	747.9
W9	399443	9143192	298	25	296.1
W10	399483	9143149	294	28	292.1
W10 W11	401554	9143149	600	28	598.8
W11 W12	401334	9142890	600	24	598.6
W12	403058	9143528	687	12	682
W13	403056	9143528	687	14	681.5
W14	402955	9143301	687	13	680.5
W15	402933	9143421	687	15	681
W10 W17	402808	9143319	687	15	680.5
		9143289	725	13 17	719.2
W18	403033		725 725		
W19	403033	9143019		20	719
W20 W21	402912 403302	9142833	750 717.46	21 25	744.3
		9143013			716.56
W22	402746	9139995	669.4	30	667.4
W23	402877	9139999	643.6	31	635.6
W24	403430	9138812	520.88	30	519.6
W25	403527	9138406	482.67	33	481.45
W26	403071	9138006	324.3	32	321.3
W27	399665	9138373	462.68	15	461.6
W28	399723	9138318	465.8	18	464.8
W29	399015	9137910	391.8	45	390.6
W30	399333	9137742	476.8	47	474.8
W31	399284	9137727	476.6	46	475.1
W32	400808	9143186	502	25	499.9
W33	400865	9143223	512	15	511
W34	400002	9138458	444	35	441.1
W35	399839	9138247	437	30	434.2

4.2 Groundwater Flow

Groundwater flow can be interpreted based on the local groundwater table (Fig. 5). Unfortunately, dug wells are only found locally in several locations, even many areas do not have dug wells. It means that the availability of dug wells at the research area relatively small and the distribution is uneven.

Due to the availability of dug wells and local distribution, the groundwater contour pattern cannot be generated throughout the study area. This pattern of groundwater contours can only be made around dug wells areas so that the groundwater flow pattern

cannot be interpreted in relation to other areas.

There are some depression springs found in the research area (Table 2 and Fig. 4). These springs mainly found at the steep morphology of Old Andesite Formation, and sometimes can be met at Jonggrangan Formation rocks with single or combination type. For example, Mudal spring (S17) develops as depression, fracture, tubular spring. The tubular porosities even grow to be cavity ones.

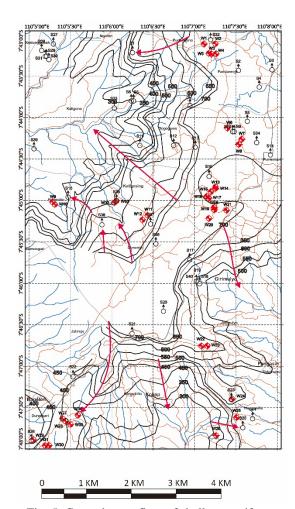


Fig. 5. Groundwater flow of shallow aquifer. Legend:

Dug well
Spring
Groundwater table contour
Groundwater flow

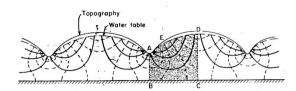
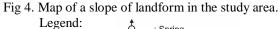



Fig. 6. Groundwater flow net in a two-dimensional vertical cross section (after Hubert, 1940 in [10]).

Groundwater flow develops as a local flow system in the area. This system usually develops along with local relief [10]. In the local flow condition, the topography usually influences the groundwater table. The water table is coincident with the ground surface in the valley, sometimes produced spring, and forms a weak replica of the topography on the hills (Fig. 6). The flow lines deliver groundwater from recharge areas to discharge areas.

Discharge of groundwater occurs in nature when water emerges from underground [7]. Most natural discharge occurs as flow into surface water bodies, flow to the surface appears as a spring. This phenomenon let the appearance of depression spring type. The depression spring is formed where the ground surface intersects the water table.

The depression springs prove that there are groundwater table lines cross steep cliffs or slope of morphology. It means that actually morphology or topography also control groundwater flow. In this term, spring will be a discharge of groundwater flow. Therefore, some groundwater flow lines usually lead toward spring as a discharge of it.

4.3 Topographic Control on Groundwater Flow

There are at least two parameters of topography that can be analyzed to see their influence on groundwater flow, i.e. elevation and slope. Groundwater tends to flow from a higher hydrostatic head (groundwater table) to the lower ones. The groundwater flow is represented as a groundwater table. These relationships can be seen in Fig. 7 - 8.

Table 2. Some depression type springs in the research area.

Spring code	Location	Coordinate		Spring
		Northing	Easting	Type
S1	Pandanrejo	401223	9146528	Depression
S2	Tlogoguwo	403580	9146131	Depression
S5	Tuk Songo	401210	9145447	Depression
S 6	Tuk Songo	401208	9145447	Depression
S 8	Tlogoguwo	403774	9145005	Depression
S 9	Tlogoguwo	403471	9144773	Depression
S10	Tlogoguwo	403468	9144755	Depression
S11	Pagertengah	401387	9144466	Depression
S12	Tlogoguwo	402137	9144468	Depression
S15	Kalilo	402925	9143777	Depression
S16	Hulosobo	399792	9143316	Depression
S17	Mudal	402496	9141923	Depression, fracture, cavity
S24	Clapar 1	403892	9138389	Depression
S27	Kaligono	399464	9146723	Depression
S28	Kaligono	399223	9146585	Depression
S29	Kaligono	399205	9146580	Depression
S30	Kaligono	399314	9146451	Depression
S31	Kaligono	399368	9146377	Depression

The relationship between elevation and the groundwater table gives a coefficient correlation value of 99.99% (Fig. 7). It means that the groundwater table always follows relief or topography. There are many variations in groundwater table depth in a peak of the hill if it is compared within the valley. Sometimes, the groundwater table is found deeper in the hilltop. But in general, the shape of the groundwater flow line in

a vertical cross section will be similar to topography (see Fig. 6).

Meanwhile, the relationship between the slope and the groundwater table show a worse value (Fig. 8). This relation is indicated moderate correlation by the r² value of 0.2933 or coefficient correlation (r) of 54.16%. Slopes generally affect rainfall to be infiltrated or runoff. The amount of rainwater that infiltrates the slope is also an important factor in the stability of soil [11]. Slope instability in a tropical country normally triggered by the high seasonal rainfall event as well as geological factors [12].

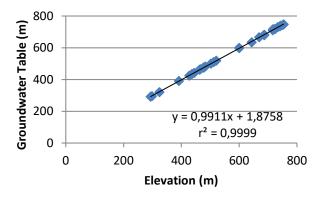


Fig 7. The relationship between elevation with the groundwater table.

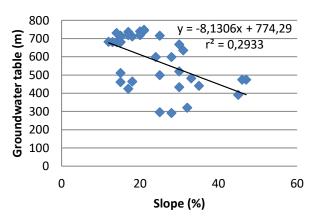


Fig. 8. The relationship between the slope with the groundwater table.

Although the relationship between slope and groundwater flow only shows moderate correlation, there are many discharges of groundwater flow controlled by the break of a slope of landforms. It means that landforms actually control groundwater flow because the flow usually goes toward spring as a discharge point.

Many steep slope landscapes made a break of slope in the research area. This condition triggers the occurrence of springs. Then, those springs can change the direction of the groundwater flow. The groundwater flows principally from recharge to discharge area [13].

There may be changes in water resource such as groundwater pattern or its quantity. It is related to behavior and trends of dynamic change include relationship and interaction of variables in the system under different a spatial and temporal parameter such as water quality [14]. Therefore, the topographic changes may influence the groundwater flow pattern.

Such as the pattern of groundwater flow in free aquifers in general, the pattern of shallow groundwater flow in the study area flows following the topography. This condition does not only occur in free aquifers, but it can occur in confined aquifers. The direction of groundwater movement in the artesian aquifer may coincide with the flow of the rivers, and the slope of the groundwater flow varies, with the large values in the groundwater discharge zone [15].

The addition of dug wells will also cause the groundwater flow to change direction. Therefore, in an urban area, groundwater flow may vary locally from time to time and can change depending abstraction. Nevertheless, the study area is not an urban area so there is rarely the addition of dug wells.

The isotopic data are evaluated to complete the analysis (Table 3). From the 40 springs found in the field, 14 well-selected springs were chosen to collect isotope data. All data were taken in dry season.

In any certain area regionally, there is an altitude effect can be determined from isotopic data of springs from some different elevations. These phenomena yield a distinct correlation exists between the ¹⁸O and D values and elevation [9]. Principally, precipitation will have a light isotope content in place with higher elevation [17] as well as shown in Jakarta Basin [18]. Unfortunately, this altitude effect in the research area is invisible (Fig. 9).

Table 3. Stable isotope data from springs.

No.	h (m)	$\delta^{18}O$ (‰)	δD (‰)
S1	512	-7,4	-42,1
S4	747	-7,25	-45,5
S 7	665	-6,84	-42,2
S11	409	-7,34	-43,1
S13	705	-7,4	-46,6
S14	710	-6,6	-39,3
S16	340	-6,88	-41,1
S17	664	-7,39	-45,1
S20	728	-6,72	-38,9
S21	706	-7,39	-41,2
S25	437	-5,51	-34,7
S26	400	-6,45	-36,8

S29	311	-6,45	-38,8
S39	211	-6.8	-41.3

Fig. 9 explains that there is a very weak correlation between elevation and groundwater. This correlation only has r² very small. Nevertheless, the isotopic value usually lighter with the increase of altitude.

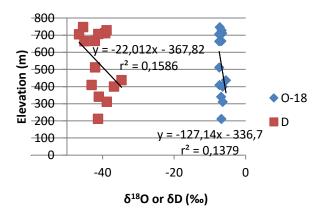


Fig. 9. The poor relationship between $\delta^{18}O$ or δD values with elevation in the research area.

Actually, there is a narrow range of altitude in the study area. Moreover, there is a coarse relief result in an unclear difference in isotopic values. It can also be interpreted that groundwater flows in the local system, in a short time, where the evolution process hasn't been occurred to make any change of isotopic value or enrichment. The recharge may be in a near area with no significant difference of altitude, therefore the value of isotopic enrichment is still unclear. Poor correlation may also be caused by a narrow altitude range and a wide range of isotope values. Therefore, the estimated elevation of the recharge zone is difficult to determine based on groundwater isotope content in the study area.

5. CONCLUSION

The topographic parameters that affect groundwater flow are elevation and slope of landscape with a moderate - very strong correlation. The relationship between elevation and groundwater gives a correlation coefficient (r) of 99.99% (very strong), while the slope makes r-value of 54.16% (moderate). Unfortunately, the isotopic value doesn't support this phenomenon, however, this isotopic data prove a variable value of local groundwater flow that is not controlled by altitude effect.

6. ACKNOWLEDGMENTS

The authors would like to express gratitude to STTNAS and Ministry of Research, Technology and Higher Education for funding the research by DIPA- 042.06.1.401516/2018, December 5th, 2017. The award is also dedicated to UNPAD for the encouragement of this research.

7. REFERENCES

- [1] Van Bemmelen, R.W., The Geology of Indonesia. Vol. 1A, Martinus Nijhoff, The Hague, Netherland, 1949, pp. 546, 594 602.
- [2] Geological Agency, Atlas of Groundwater Basin Indonesia, Department of Energy and Mineral Resources, Bandung, ISSN 987-602-9105-09-4, 2011, pp. 14.
- [3] Kassambara, B., Ganji, H. and Kajisa, T., Impact of Agricultural Water Allocation on The Ecosystems in The Inner Niger River Delta, International Journal of GEOMATE, Feb. 2018, Vol. 14, Issue 42, pp. 164 170.
- [4] Saber, M., Abdel-Fattah, M., Kantoush, S.A. and Sumi, T., Implications of Land Subsidence due to Groundwater Over-pumping: Monitoring Methodology using Grace Data, International Journal of GEOMATE, Jan. 2018, Vol. 14, Issue 41, pp. 52-29.
- [5] Listyani, T., Sulaksana, N., Alam, B.Y.C.S.S.S.A., Sudradjat, A. and Haryanto, A.D., Lineament Control on Spring Characteristics at Central West Progo Hills, Indonesia, International Journal of GEOMATE, Vol.14, Issue 46, 2018, pp.177-184.
- [6] Suif, Z., Yoshimura, C., Ahmad, N. and Hul, S., Distributed Model of Hydrological and Sediment Transport Process in Mekong River Basin, International Journal of GEOMATE, Feb. 2018, Vol. 14, Issue 42, pp.134 139.
- [7] Rahardjo, W., Sukandarrumidi, and Rosidi, H.M.D., Geological Map of Yogyakarta, Scale 1:100.000, Center for Geological Research and Development, Bandung, 1995.
- [8] Kusumayudha, S.B., Model Konseptual Hidrogeologi Kubah Kulonprogo berdasarkan Pemetaan dan Analisis Geometri Fraktal, Proceedings of the 39th IAGI Annual Convention and Exhibition, Lombok, 2010.
- [9] Listyani, T., Sulaksana, N., Alam, B.Y.C.S.S.S., and Sudradjat, A., Quantitative Geomorphology of Landform at Samigaluh and Surrounding Area, West Progo, Central Java,

- Indonesia, Proceedings of The 2nd Join Conference of Utsunomiya University and Universitas Padjajaran, Japan, 2017, pp. 242 247, http://hdl.handle.net/10241/10929.
- [10] Freeze, R.A. and Cherry, J.A., Groundwater, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1979, pp.193 196.
- [11] Rasool, A.M. and Kuwano, J., Influence of Matric Suction on Instability of Unsaturated Silty Soil in Unconfined Conditions, International Journal of GEOMATE, Feb. 2018, Vol. 14, Issue 42, pp. 1-7.
- [12] Ibrahim, A., Ahmad, I.K. and Taha, M.R., 3 Dimension Real-Time Images of Rainfall Infiltration into Unsaturated Soil Slope, International Journal of GEOMATE, March 2018, Vol. 14, Issue 43, pp. 31 – 35.
- [13] Todd, D.K., Groundwater Hydrology, 2nd Ed. John Willey & Sons Inc, New York, 1980, pp. 13 17, 47 50.
- [14] Maprasit, S., Darnsawasdi, R., Rangpan, V. and Suksaroj, C., Spatial Variations of Surface Water Quality and Pollution Sources in Khlong U-Tapao River Basin, International Journal of GEOMATE, March 2018, Vol. 14, Issue 43, pp. 98 – 103.
- [15] Zaalishvili, V., Dzhgamadze, A., Gogichev, R., Dzeranov, B. and Burdzieva, O., Changes in The Qualitative Characteristics of Groundwater of The Ossetian Artesian Aquifer, International Journal of GEOMATE, Nov. 2018, Vol. 15, Issue 51, pp. 22 – 30.
- [16] Lee, K.-S., Wenner, D.B., Lee, I., Using H-and O-isotopic Data for Estimating The Relative Contributions of Rainy and Dry Season Precipitation to Groundwater: Example from Cheju Island, Korea, Journal of Hydrology, Elsevier, Vol. 222, 1999, pp. 65 74.
- [17] Clayton R.N., Friedman, I., Graf, D.L., Mayeda, T.K., Meents, W.F., and Shimp, N.F., The Origin of Saline Formation Waters, Isotopic Composition, J. Geophys. Res., 1996, 71(16), 3869 3882.
- [18] Listyani, T., Groundwater Flow and Its Isotopic Evolution in Deep Aquifer of Jakarta Groundwater Basin, Journal of Geological Sciences (JGS), 2016, Vol 3, No. 1.

Copyright © Int. J. of GEOMATE. All rights reserved, including the making of copies unless permission is obtained from the copyright proprietors.

Fwd: Galley Proof for Issue 60

listyani theo styanitheophila@gmail.com> Kepada: Geomate Editor <editor@geomate.org> 11 Februari 2019 21.11

Dear Editor I have sent galley proof just now **Thanks** Best regards. Lis - Indonesia

Pada tanggal Min, 10 Feb 2019 pukul 17.43 Geomate Editor <editor@geomate.org> menulis:

Dear Authors,

Attached herewith, please see the galley proof paper for final checking. Please note that this is the final correction and after this checking, you will not be able to change anything later on. As many grammatical errors found, we have done the following corrections:

- 1. Grammar corrected by Zakaria
- 2. Formatting correction is done by Zakaria
- 3. Figures and space including the title of figures and sections corrected by Zakaria
- 4. Please upload the galley proof file (both WORD and PDF) even no correction

Please do not change the format if any correction. We accept minor correction only (no major corrections). If any correction is needed, please do it on WORD file and then convert it to PDF file. Please send PDF version (Publishable Format including all journal information such as page numbers, vol, and issue number, date of received, revised and accepted etc.) of your galley proof paper by 4 days from the date of this email using the following link.

http://www.geomatejournal.com/galley

We accept online submission only. Please make sure that your copyright must be signed by all authors (samples attached).

Best regards.

Prof. Dr. Zakaria Hossain Editor-in-Chief International Journal of GEOMATE

8104: Ms. T. Listyani R.A. Listyani : GEOMATE2018 KL Abstract: Auto Responder

geomate <noreply@jotform.com> Balas Ke: geomatejournal@gmail.com Kepada: listyanitheophila@gmail.com

20 Januari 2018 23.30

Dear Ms. T. Listyani R.A. Listyani,

Thanks. You have successfully submitted the abstract. Your paper ID number is 8104. Please use this Paper ID for full paper submission, copyright form and further communication. Please avoid Dual submission. Please always refer paper ID number in any communication to us.

Best regards.

conference@geomate.org

Your submission details are as follows:

Paper ID Number 8104 Title/Position Ms.

Full Name T. Listyani R.A. Listyani

University/Institute or Company name

Sekolah Tinggi Teknologi Nasional Yogyakarta

Office Address Street Address: Jurusan Teknik Geologi STTNAS,

Gd. E. Lt 4

Street Address Line 2: Jl. Babarsari, Caturtunggal,

Depok City: Sleman

State / Province: Yogyakarta Postal / Zip Code: 55281 Country: Indonesia

Phone Number (+62) 8164272619

E-mail listyanitheophila@gmail.com

Co-authors emails nsulaksana@unpad.ac.id;

boy.yoseph@unpad.ac.id; asudradjat@yahoo.com;

agus.didit.haryanto@unpad.ac.id

Research Area Others

Paper Title TOPOGRAPHIC CONTROL ON GROUNDWATER

FLOW IN CENTRAL OF HARD WATER AREA.

WEST PROGO HILLS, INDONESIA

Upload Abstract (must be between 150 - 250 words

Abstrak Geomate Conf 2018.docx

Powered by **JotForm**

Create your own form today!