Lampiran

A. Lampiran Tabel

TRAPEZOIDAL METRIC THREAD 1779
Trapezoidal Metric Thread — Preferred Basic Sizes (DIN 103)
P
v Net 1A 5
H = 18668 .8 a T A H L3
b= 05P +a hr’ B oy 4 3
h.=05P¥a~b 'g ~ ;E I 15y i S ﬁT
=0S5F+2a=b
hf:=0.15? 2 DD_E[e 2 }d\ [l |Dl|
| X v V58 2 \\ i
} \I‘F Buolt]Ir’ = r'_f_ |
Mo, & Depih of Boli Mt
Major Pitch . | Engige- Clearance Minor | Depthof | Major | Minor | Depth of
Diamof | Pich, | Diam., | ment, Diam, | Thread, | Diam, | Dizm., | Thread,
Bolb, | P E fy a b K, hy o, K, ity
1} 3 85 125 025 0s 6.5 175 10.5 1.5 150
iz 3 105 128 0.25 03 85 1.75 123 05 LS50
14 4 k2 L35 025 05 a5 225 145 1.5 200
L} 4 14 1,75 .25 5 1.5 2.25 16.5 115 2.6}
18 4 16 175 025 05 135 2325 185 14.5 200
0 4 18 175 035 03 155 L] 205 165 2.00
3 -} 195 - 0.25 05 165 75 125 I8 2,000
4 5 215 2 .25 075 185 275 245 . | 235
% 5 B3 2z 025 075 | 205 75 65 a2 2.25
F-] 5 5.5 3 025 075 2.5 275 W3 24 125
R [.1} 25 25 0.75 215 335 305 25 275
2 L] 2 23 .25 07s | 255 323 23 27 .75
36 & Exl 23 0.25 0I5 | 295 328 65 3 275
40 T 36.5 3 .25 075 15 375 405 H 335
a4 7 A0.8 3 025 | 035] 365 375 | s a8 125
48 4 44 35 0.25 075 85 415 485 41 3T3
50 8 46 35 .25 075 415 435 50.5 43 178
52] 48 33 0.25 075 | 4335 425 b 43 3175
55 9 505 4 025 | 075] 455 4.75 555 47 425
6l @ 555 4 .25 [505 4.75 60.5 52 425
65 10 60 43 025 | 075] 345 515 655 36 475
T 1 65 4.5 0.25 075 b 5.25 0.5 il 475
15 i1} 0 45 .25 0,75 b5 525 155] 4.75
8 1] 75 4.5 0.25 075 | 9.5 525 80,5 71 475
85 ir] 79 5.8 025 | 035] 728 625 B5.5 T4 575
] 1z B4 53 .25 075 T1.5 625 an.5 ™ 373
o5 12 #a 55 .25 075 25 625 035 # 175
100 12 @y 55 0.25 075 | 815 625 | 1005 B 5.75
11 12 104 55 023 0.75 9.5 625 1105 " 2T
120 14 113 6 0.3 15 | 108 75 121 108 6.3
130 14 123 6 0.5 5 | 3 75 131 118 6.5
140 14 133 [} .5 1.5 123 T3 141 128 6.5
150 16 142 T 0.5 1.5 133 85 151 136 T3
16l 16 152 7 0.5 L5 143 B85 161 146 15
(5111 16 162 T 0.5 13 153 &5 17 156 15
180 18 171 # 0.3 L5 | 18l 9.5 181 164 83
190 18 181 8 0.5 LS | 9.5 15 74 L]
20 18 1% 8 [1Fe] 1.5 181 95 200 184 85
210 20 200 a .5 1.5 189 105 211 192 i]
20 20 210 9 0.5 15 | 199 10.5 m an 0.5
230 0 29 9 03 1.5 209 15 i | 212 95
a0 2 229 1 .5 13 27 115 241 T s
250 el 39 10 0.5 5. |22 13 251 30 0.5
260 b4 249] 0.5 1.5 | 237 115 261 M40 10.5
I 24 258 It 03 1.5 245 125 bl | 248 IS
280 24 68 I 0.5 1.5 | 253 125 281 258 (I3
290 24 278 It 0.5 1.3 265 135 Ll | 268 11,5
1) 26 287 Iz .5 15 273 135 301 XTh 125

All dimensions are in millimeters,
#Roots are rounded to a radius, r, equal to 0.25 mm for pitches of from 3 to 12 mm inclusive and (0.5
mim for pitches of from 14 10 26 mm inclusive for power transmission.

Tabel A.1 ulir trapesium
(Sumber:http://machiningtool.blogspot.com/2014/09/macam-macam-jenis-ulir-types-of-thread.html)

B. Lampiran Arduino

File Edit Sketch Help

Auto Format CrlsT
Archive Sketch
skelch_aug 23 Fix Encoding & Reload

Tup() Serial Monitor Ctrls Shifts M
Board: "Arduino Uno” L
3 Port: “"COM1" 1 Seria
: : v coMml
s aopdl. & Programmer: "AVRISP midl” |
put your COl&iAldumo Uno)
Bum Bootloader

Gambar B.1 Memastikan Port pada USB dari arduino terdeteksi di laptop/PC

File Edit Tools Help

Verify / Compile Ctri«R
Upload Cul+U
) Upload Using Programmer CtrlsShiftsU

Export compiled Binary Ctrl= Alt+S =

Manage Libraries...

Show Sketch Folder CrleK
Include Library i Add {3" Library...
1 Add File... Suine librasie:
pu main code here, to run repeate Bridge
EEPROM
Esplora
Ethemet Look in: grbl-master
Fomata | \»
GSM E build
= LiquidCrystal - } doc
Robot Control Recent [tems grbl
Robot IR Remote 3 Tf}b! Zip
Robot Motor

© - l
SPl % Desktop

Servo

SoftwareSerial
SpacebrewYun
Stepper My Documents

Gambar B.2 Memasukan Grbl kedalam apk arduino

Edit Sketch Tools Help

New Ctri+N

Open... Cl+0

Open Recent L m

Sketchbook L 9.8 .

Emmples ! 105tneke ’

Close CtrlsW ArduinalSP

Save Ctrl+5

Save As... Ctrl+Shift+$ Bridge »
EEPROM 4

PageSetup Ctrl+ShiftsP i i

Print Ctri+P Ehemet d

Preferences Cirl+Comma Firmata 3

P GSM >

Lo e LiquidCrystal B
Robet Control Ly
Robet Mator L
SO L
Servo »
SoftwareSenal * il
Pl >
Stepper »
TFT »
USBHost »
WiFi L
Wire >

—

grbl ' grblUpload

PS2Keyboard 'b

Gambar B.3 Kemudian membuka file Grbl yang telah di tambahkan

Gambar B.4 Tampilan program Grbl (program tidak di ubah-ubah), lalu upload

C. Lampiran Pemrograman Grbl

Pemrograman C.1 Config

/*
config.h - compile time configuration
Part of Grbl

Copyright (¢) 2012-2015 Sungeun K. Jeon
Copyright (¢) 2009-2011 Simen Svale Skogsrud

Grbl is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

Grbl is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/

// This file contains compile-time configurations for Grbl's internal system. For the most part,
// users will not need to directly modify these, but they are here for specific needs, i.e.
// performance tuning or adjusting to non-typical machines.

// IMPORTANT: Any changes here requires a full re-compiling of the source code to propagate them.

#ifndef config_h
#define config h
#include "grbl.h" // For Arduino IDE compatibility.

// Default settings. Used when resetting EEPROM. Change to desired name in defaults.h
#define DEFAULTS GENERIC

// Serial baud rate
#define BAUD RATE 115200

// Default cpu mappings. Grbl officially supports the Arduino Uno only. Other processor types
// may exist from user-supplied templates or directly user-defined in cpu_map.h
#define CPU_ MAP ATMEGA328P // Arduino Uno CPU

// Define realtime command special characters. These characters are 'picked-off' directly from the
// serial read data stream and are not passed to the grbl line execution parser. Select characters

// that do not and must not exist in the streamed g-code program. ASCII control characters may be
// used, if they are available per user setup. Also, extended ASCII codes (>127), which are never in
/I g-code programs, maybe selected for interface programs.

// NOTE: If changed, manually update help message in report.c.

#define CMD_STATUS REPORT "'

#define CMD_FEED HOLD "'

#define CMD CYCLE START '~

#define CMD_RESET 0x18 // ctrl-x.

#define CMD_SAFETY_ DOOR '@’

// If homing is enabled, homing init lock sets Grbl into an alarm state upon power up. This forces

// the user to perform the homing cycle (or override the locks) before doing anything else. This is
// mainly a safety feature to remind the user to home, since position is unknown to Grbl.
#define HOMING INIT LOCK // Comment to disable

// Define the homing cycle patterns with bitmasks. The homing cycle first performs a search mode

// to quickly engage the limit switches, followed by a slower locate mode, and finished by a short

/I pull-off motion to disengage the limit switches. The following HOMING CYCLE x defines are
executed

// in order starting with suffix 0 and completes the homing routine for the specified-axes only. If

// an axis is omitted from the defines, it will not home, nor will the system update its position.

// Meaning that this allows for users with non-standard cartesian machines, such as a lathe (x then z,

// with no y), to configure the homing cycle behavior to their needs.

//' NOTE: The homing cycle is designed to allow sharing of limit pins, if the axes are not in the same

// cycle, but this requires some pin settings changes in cpu_map.h file. For example, the default homing
// cycle can share the Z limit pin with either X or Y limit pins, since they are on different cycles.

// By sharing a pin, this frees up a precious 1O pin for other purposes. In theory, all axes limit pins

// may be reduced to one pin, if all axes are homed with seperate cycles, or vice versa, all three axes

// on separate pin, but homed in one cycle. Also, it should be noted that the function of hard limits

// will not be affected by pin sharing.

// NOTE: Defaults are set for a traditional 3-axis CNC machine. Z-axis first to clear, followed by X &
Y.

#define HOMING_CYCLE 0 (1<<Z_ AXIS) // REQUIRED: First move Z to clear
workspace.

#define HOMING CYCLE 1 ((1<<X_ AXIS)|(1<<Y_AXIS)) // OPTIONAL: Then move X,Y at the
same time.

// #define HOMING _CYCLE 2 /I OPTIONAL: Uncomment and add
axes mask to enable

// Number of homing cycles performed after when the machine initially jogs to limit switches.

// This help in preventing overshoot and should improve repeatability. This value should be one or
// greater.

#define N HOMING LOCATE CYCLE 1 // Integer (1-128)

/I After homing, Grbl will set by default the entire machine space into negative space, as is typical

// for professional CNC machines, regardless of where the limit switches are located. Uncomment this
/l define to force Grbl to always set the machine origin at the homed location despite switch
orientation.

// #define HOMING FORCE_SET_ ORIGIN // Uncomment to enable.

// Number of blocks Grbl executes upon startup. These blocks are stored in EEPROM, where the size
/I 'and addresses are defined in settings.h. With the current settings, up to 2 startup blocks may

// be stored and executed in order. These startup blocks would typically be used to set the g-code

// parser state depending on user preferences.

#define N_STARTUP_LINE 2 // Integer (1-2)

// Number of floating decimal points printed by Grbl for certain value types. These settings are

// determined by realistic and commonly observed values in CNC machines. For example, position
// values cannot be less than 0.001mm or 0.0001in, because machines can not be physically more
// precise this. So, there is likely no need to change these, but you can if you need to here.

// NOTE: Must be an integer value from 0 to ~4. More than 4 may exhibit round-off errors.
#define N DECIMAL COORDVALUE INCH 4 // Coordinate or position value in inches
#define N DECIMAL COORDVALUE MM 3 // Coordinate or position value in mm

#define N DECIMAL RATEVALUE INCH 1 //Rate or velocity value in in/min

#define N DECIMAL RATEVALUE MM 0 // Rate or velocity value in mm/min

#define N DECIMAL SETTINGVALUE 3 // Decimals for floating point setting values

// If your machine has two limits switches wired in parallel to one axis, you will need to enable

// this feature. Since the two switches are sharing a single pin, there is no way for Grbl to tell

// which one is enabled. This option only effects homing, where if a limit is engaged, Grbl will

// alarm out and force the user to manually disengage the limit switch. Otherwise, if you have one

// limit switch for each axis, don't enable this option. By keeping it disabled, you can perform a
// homing cycle while on the limit switch and not have to move the machine off of it.
// #define LIMITS TWO_SWITCHES ON_AXES

/I Allows GRBL to track and report gcode line numbers. Enabling this means that the planning buffer
// goes from 18 or 16 to make room for the additional line number data in the plan_block t struct
#define USE_LINE NUMBERS // Disabled by default. Uncomment to enable.

/I Allows GRBL to report the real-time feed rate. Enabling this means that GRBL will be reporting
more

// data with each status update.

/I NOTE: This is experimental and doesn't quite work 100%. Maybe fixed or refactored later.

// #define REPORT REALTIME RATE // Disabled by default. Uncomment to enable.

// Upon a successful probe cycle, this option provides immediately feedback of the probe coordinates
// through an automatically generated message. If disabled, users can still access the last probe

// coordinates through Grbl '$#' print parameters.

#define MESSAGE_PROBE_COORDINATES // Enabled by default. Comment to disable.

// Enables a second coolant control pin via the mist coolant g-code command M7 on the Arduino Uno
// analog pin 4. Only use this option if you require a second coolant control pin.

/I NOTE: The M8 flood coolant control pin on analog pin 3 will still be functional regardless.

// #define ENABLE M?7 // Disabled by default. Uncomment to enable.

// This option causes the feed hold input to act as a safety door switch. A safety door, when triggered,
// immediately forces a feed hold and then safely de-energizes the machine. Resuming is blocked until
// the safety door is re-engaged. When it is, Grbl will re-energize the machine and then resume on the
// previous tool path, as if nothing happened.

// #define ENABLE SAFETY DOOR_INPUT_ PIN // Default disabled. Uncomment to enable.

/I After the safety door switch has been toggled and restored, this setting sets the power-up delay
// between restoring the spindle and coolant and resuming the cycle.

/I NOTE: Delay value is defined in milliseconds from zero to 65,535.

#define SAFETY_DOOR_SPINDLE_DELAY 4000

#define SAFETY DOOR _COOLANT DELAY 1000

// Enable CoreXY kinematics. Use ONLY with CoreXY machines.

// IMPORTANT: If homing is enabled, you must reconfigure the homing cycle #defines above to

// #define HOMING _CYCLE_0 (1<<X_AXIS) and #define HOMING CYCLE 1 (1<<Y_AXIS)

// NOTE: This configuration option alters the motion of the X and Y axes to principle of operation

// defined at (http://corexy.com/theory.html). Motors are assumed to positioned and wired exactly as

// described, if not, motions may move in strange directions. Grbl requires the CoreXY A and B motors
// have the same steps per mm internally.

// #define COREXY // Default disabled. Uncomment to enable.

// Inverts pin logic of the control command pins. This essentially means when this option is enabled
// you can use normally-closed switches, rather than the default normally-open switches.

/I NOTE: If you require individual control pins inverted, keep this macro disabled and simply alter
/" the CONTROL INVERT MASK definition in cpu_map.h files.

// #define INVERT ALL CONTROL PINS // Default disabled. Uncomment to enable.

// Inverts select limit pin states based on the following mask. This effects all limit pin functions,

// such as hard limits and homing. However, this is different from overall invert limits setting.

// This build option will invert only the limit pins defined here, and then the invert limits setting

// will be applied to all of them. This is useful when a user has a mixed set of limit pins with both

// normally-open(NO) and normally-closed(NC) switches installed on their machine.

//' NOTE: PLEASE DO NOT USE THIS, unless you have a situation that needs it.

// #define INVERT LIMIT PIN MASK ((1<<X_ LIMIT BIT)|(1<<Y_LIMIT BIT)) // Default
disabled. Uncomment to enable.

// Inverts the spindle enable pin from low-disabled/high-enabled to low-enabled/high-disabled. Useful

// for some pre-built electronic boards.

// NOTE: If VARIABLE SPINDLE is enabled(default), this option has no effect as the PWM output
and

// spindle enable are combined to one pin. If you need both this option and spindle speed PWM,

// uncomment the config option USE_SPINDLE DIR AS ENABLE PIN below.

// #define INVERT SPINDLE ENABLE PIN // Default disabled. Uncomment to enable.

// Enable control pin states feedback in status reports. The data is presented as simple binary of

// the control pin port (0 (low) or 1(high)), masked to show only the input pins. Non-control pins on the
// port will always show a 0 value. See cpu_map.h for the pin bitmap. As with the limit pin reporting,
// ' we do not recommend keeping this option enabled. Try to only use this for setting up a new CNC.

// #define REPORT CONTROL PIN STATE // Default disabled. Uncomment to enable.

/I When Grbl powers-cycles or is hard reset with the Arduino reset button, Grbl boots up with no
ALARM

// by default. This is to make it as simple as possible for new users to start using Grbl. When homing

// is enabled and a user has installed limit switches, Grbl will boot up in an ALARM state to indicate

/I Grbl doesn't know its position and to force the user to home before proceeding. This option forces

// Grbl to always initialize into an ALARM state regardless of homing or not. This option is more for

// OEMs and LinuxCNC users that would like this power-cycle behavior.

// #define FORCE_INITIALIZATION ALARM // Default disabled. Uncomment to enable.

/
/I ADVANCED CONFIGURATION OPTIONS:

// Enables minimal reporting feedback mode for GUIs, where human-readable strings are not as
important.

// This saves nearly 2KB of flash space and may allow enough space to install other/future features.

// GUIs will need to install a look-up table for the error-codes that Grbl sends back in their place.

// NOTE: This feature is new and experimental. Make sure the GUI you are using supports this mode.

// #define REPORT _GUI_MODE // Default disabled. Uncomment to enable.

// The temporal resolution of the acceleration management subsystem. A higher number gives smoother
// acceleration, particularly noticeable on machines that run at very high feedrates, but may negatively

// impact performance. The correct value for this parameter is machine dependent, so it's advised to

// set this only as high as needed. Approximate successful values can widely range from 50 to 200 or
more.

// NOTE: Changing this value also changes the execution time of a segment in the step segment buffer.
// When increasing this value, this stores less overall time in the segment buffer and vice versa. Make

// certain the step segment buffer is increased/decreased to account for these changes.

#define ACCELERATION TICKS PER SECOND 100

// Adaptive Multi-Axis Step Smoothing (AMASS) is an advanced feature that does what its name
implies,

// smoothing the stepping of multi-axis motions. This feature smooths motion particularly at low step

// frequencies below 10kHz, where the aliasing between axes of multi-axis motions can cause audible

// noise and shake your machine. At even lower step frequencies, AMASS adapts and provides even
better

// step smoothing. See stepper.c for more details on the AMASS system works.

#define ADAPTIVE MULTI AXIS STEP SMOOTHING // Default enabled. Comment to disable.

// Sets the maximum step rate allowed to be written as a Grbl setting. This option enables an error

// check in the settings module to prevent settings values that will exceed this limitation. The maximum
// step rate is strictly limited by the CPU speed and will change if something other than an AVR
running

// at 16MHz is used.

// NOTE: For now disabled, will enable if flash space permits.

// #define MAX_STEP RATE HZ 30000 // Hz

// By default, Grbl sets all input pins to normal-high operation with their internal pull-up resistors

// enabled. This simplifies the wiring for users by requiring only a switch connected to ground,

// although its recommended that users take the extra step of wiring in low-pass filter to reduce

// electrical noise detected by the pin. If the user inverts the pin in Grbl settings, this just flips

// which high or low reading indicates an active signal. In normal operation, this means the user

// needs to connect a normal-open switch, but if inverted, this means the user should connect a

// normal-closed switch.

// ' The following options disable the internal pull-up resistors, sets the pins to a normal-low

// operation, and switches must be now connect to Vcc instead of ground. This also flips the meaning
// of the invert pin Grbl setting, where an inverted setting now means the user should connect a

// normal-open switch and vice versa.

// NOTE: All pins associated with the feature are disabled, i.e. XYZ limit pins, not individual axes.
/I WARNING: When the pull-ups are disabled, this requires additional wiring with pull-down resistors!
/f#define DISABLE _LIMIT PIN PULL UP

/f#define DISABLE PROBE PIN PULL UP

/f#define DISABLE CONTROL _PIN PULL UP

/I Sets which axis the tool length offset is applied. Assumes the spindle is always parallel with

// the selected axis with the tool oriented toward the negative direction. In other words, a positive

// tool length offset value is subtracted from the current location.

#define TOOL LENGTH OFFSET AXIS Z AXIS // Default z-axis. Valid values are X AXIS,
Y AXIS, or Z AXIS.

// Enables variable spindle output voltage for different RPM values. On the Arduino Uno, the spindle

// enable pin will output 5V for maximum RPM with 256 intermediate levels and 0V when disabled.

// NOTE: IMPORTANT for Arduino Unos! When enabled, the Z-limit pin D11 and spindle enable pin
D12 switch!

/I The hardware PWM output on pin D11 is required for variable spindle output voltages.

#define VARIABLE SPINDLE // Default enabled. Comment to disable.

// Used by the variable spindle output only. These parameters set the maximum and minimum spindle
speed

/I "S" g-code values to correspond to the maximum and minimum pin voltages. There are 256 discrete
and

// equally divided voltage bins between the maximum and minimum spindle speeds. So for a 5V pin,
1000

// max rpm, and 250 min rpm, the spindle output voltage would be set for the following "S" commands:
// "S1000" @ 5V, "S250" @ 0.02V, and "S625" @ 2.5V (mid-range). The pin outputs 0V when
disabled.

#define SPINDLE MAX RPM 24000.0 / Max spindle RPM. This value is equal to 100% duty cycle
on the PWM.

#define SPINDLE MIN RPM 0.0 // Min spindle RPM. This value is equal to (1/256) duty cycle
on the PWM.

// Used by variable spindle output only. This forces the PWM output to a minimum duty cycle when
enabled.

// When disabled, the PWM pin will still read 0V. Most users will not need this option, but it may be

// useful in certain scenarios. This setting does not update the minimum spindle RPM calculations. Any
// spindle RPM output lower than this value will be set to this value.

// #define MINIMUM_SPINDLE PWM 5 // Default disabled. Uncomment to enable. Integer (0-255)

// By default on a 328p(Uno), Grbl combines the variable spindle PWM and the enable into one pin to
help

// preserve 1/O pins. For certain setups, these may need to be separate pins. This configure option uses

// the spindle direction pin(D13) as a separate spindle enable pin along with spindle speed PWM on pin
D11.

// NOTE: This configure option only works with VARIABLE SPINDLE enabled and a 328p processor
(Uno).

// NOTE: With no direction pin, the spindle clockwise M4 g-code command will be removed. M3 and
M35 still work.

// NOTE: BEWARE! The Arduino bootloader toggles the D13 pin when it powers up. If you flash Grbl
with

// a programmer (you can use a spare Arduino as "Arduino as ISP". Search the web on how to wire
this.),

// this D13 LED toggling should go away. We haven't tested this though. Please report how it goes!

// #define USE_SPINDLE DIR AS ENABLE PIN // Default disabled. Uncomment to enable.

// With this enabled, Grbl sends back an echo of the line it has received, which has been pre-parsed
(spaces
/I removed, capitalized letters, no comments) and is to be immediately executed by Grbl. Echoes will
not be
// sent upon a line buffer overflow, but should for all normal lines sent to Grbl. For example, if a user
/l sendss the line 'gl x1.032 y2.45 (test comment)', Grbl will echo back in the form '[echo:
G1X1.032Y2.45].
// NOTE: Only use this for debugging purposes!! When echoing, this takes up valuable resources and
can effect
/I performance. If absolutely needed for normal operation, the serial write buffer should be greatly
increased
// to help minimize transmission waiting within the serial write protocol.

#define REPORT _ECHO_LINE RECEIVED // Default disabled. Uncomment to enable.

// Minimum planner junction speed. Sets the default minimum junction speed the planner plans to at

// every buffer block junction, except for starting from rest and end of the buffer, which are always

/I zero. This value controls how fast the machine moves through junctions with no regard for
acceleration

// limits or angle between neighboring block line move directions. This is useful for machines that can't
// tolerate the tool dwelling for a split second, i.e. 3d printers or laser cutters. If used, this value

// should not be much greater than zero or to the minimum value necessary for the machine to work.
#define MINIMUM_JUNCTION_SPEED 0.0 // (mm/min)

// Sets the minimum feed rate the planner will allow. Any value below it will be set to this minimum

// value. This also ensures that a planned motion always completes and accounts for any floating-point
/I round-off errors. Although not recommended, a lower value than 1.0 mm/min will likely work in
smaller

// machines, perhaps to 0.1mm/min, but your success may vary based on multiple factors.

#define MINIMUM_FEED RATE 1.0 // (mm/min)

// Number of arc generation iterations by small angle approximation before exact arc trajectory

// correction with expensive sin() and cos() calcualtions. This parameter maybe decreased if there
// are issues with the accuracy of the arc generations, or increased if arc execution is getting

// bogged down by too many trig calculations.

#define N ARC_CORRECTION 12 // Integer (1-255)

// The arc G2/3 g-code standard is problematic by definition. Radius-based arcs have horrible
numerical

// errors when arc at semi-circles(pi) or full-circles(2*pi). Offset-based arcs are much more accurate

// but still have a problem when arcs are full-circles (2*pi). This define accounts for the floating

// point issues when offset-based arcs are commanded as full circles, but get interpreted as extremely

// small arcs with around machine epsilon (1.2e-7rad) due to numerical round-off and precision issues.
// This define value sets the machine epsilon cutoff to determine if the arc is a full-circle or not.

/I NOTE: Be very careful when adjusting this value. It should always be greater than 1.2e-7 but not too
// much greater than this. The default setting should capture most, if not all, full arc error situations.
#define ARC_ANGULAR TRAVEL EPSILON 5E-7 // Float (radians)

// Time delay increments performed during a dwell. The default value is set at 50ms, which provides

// a maximum time delay of roughly 55 minutes, more than enough for most any application. Increasing
// this delay will increase the maximum dwell time linearly, but also reduces the responsiveness of

// run-time command executions, like status reports, since these are performed between each dwell

// time step. Also, keep in mind that the Arduino delay timer is not very accurate for long delays.
#define DWELL TIME STEP 50 // Integer (1-255) (milliseconds)

// Creates a delay between the direction pin setting and corresponding step pulse by creating

// another interrupt (Timer2 compare) to manage it. The main Grbl interrupt (Timerl compare)

// sets the direction pins, and does not immediately set the stepper pins, as it would in

// normal operation. The Timer2 compare fires next to set the stepper pins after the step

// pulse delay time, and Timer2 overflow will complete the step pulse, except now delayed

// by the step pulse time plus the step pulse delay. (Thanks langwadt for the idea!)

// NOTE: Uncomment to enable. The recommended delay must be > 3us, and, when added with the
// user-supplied step pulse time, the total time must not exceed 127us. Reported successful

// values for certain setups have ranged from 5 to 20us.

// #define STEP_PULSE DELAY 10 // Step pulse delay in microseconds. Default disabled.

// The number of linear motions in the planner buffer to be planned at any give time. The vast
// majority of RAM that Grbl uses is based on this buffer size. Only increase if there is extra
// available RAM, like when re-compiling for a Mega or Sanguino. Or decrease if the Arduino
// begins to crash due to the lack of available RAM or if the CPU is having trouble keeping

// up with planning new incoming motions as they are executed.

// #define BLOCK _BUFFER_SIZE 18 // Uncomment to override default in planner.h.

/I Governs the size of the intermediary step segment buffer between the step execution algorithm

// and the planner blocks. Each segment is set of steps executed at a constant velocity over a

// fixed time defined by ACCELERATION TICKS PER SECOND. They are computed such that the
planner

// block velocity profile is traced exactly. The size of this buffer governs how much step

// execution lead time there is for other Grbl processes have to compute and do their thing

// before having to come back and refill this buffer, currently at ~50msec of step moves.

// #define SEGMENT_ BUFFER_SIZE 6 // Uncomment to override default in stepper.h.

/I Line buffer size from the serial input stream to be executed. Also, governs the size of

// each of the startup blocks, as they are each stored as a string of this size. Make sure

// to account for the available EEPROM at the defined memory address in settings.h and for
// the number of desired startup blocks.

/I NOTE: 80 characters is not a problem except for extreme cases, but the line buffer size

// can be too small and g-code blocks can get truncated. Officially, the g-code standards

// support up to 256 characters. In future versions, this default will be increased, when

// we know how much extra memory space we can re-invest into this.

// #define LINE_ BUFFER_SIZE 80 // Uncomment to override default in protocol.h

// Serial send and receive buffer size. The receive buffer is often used as another streaming

// buffer to store incoming blocks to be processed by Grbl when its ready. Most streaming

// interfaces will character count and track each block send to each block response. So,

// increase the receive buffer if a deeper receive buffer is needed for streaming and avaiable
// memory allows. The send buffer primarily handles messages in Grbl. Only increase if large
/I messages are sent and Grbl begins to stall, waiting to send the rest of the message.

// NOTE: Buffer size values must be greater than zero and less than 256.

// #define RX BUFFER_SIZE 128 // Uncomment to override defaults in serial.h

// #define TX BUFFER SIZE 64

/I Toggles XON/XOFF software flow control for serial communications. Not officially supported

// due to problems involving the Atmega8U2 USB-to-serial chips on current Arduinos. The firmware
// on these chips do not support XON/XOFF flow control characters and the intermediate buffer

// in the chips cause latency and overflow problems with standard terminal programs. However,

// using specifically-programmed Ul's to manage this latency problem has been confirmed to work.
/I As well as, older FTDI FT232RL-based Arduinos(Duemilanove) are known to work with standard
// terminal programs since their firmware correctly manage these XON/XOFF characters. In any

// case, please report any successes to grbl administrators!

// #define ENABLE XONXOFF // Default disabled. Uncomment to enable.

/I A simple software debouncing feature for hard limit switches. When enabled, the interrupt
// monitoring the hard limit switch pins will enable the Arduino's watchdog timer to re-check

// the limit pin state after a delay of about 32msec. This can help with CNC machines with

// problematic false triggering of their hard limit switches, but it WILL NOT fix issues with

// electrical interference on the signal cables from external sources. It's recommended to first

// use shielded signal cables with their shielding connected to ground (old USB/computer cables
// work well and are cheap to find) and wire in a low-pass circuit into each limit pin.

// #define ENABLE SOFTWARE DEBOUNCE // Default disabled. Uncomment to enable.

// Force Grbl to check the state of the hard limit switches when the processor detects a pin

// change inside the hard limit ISR routine. By default, Grbl will trigger the hard limits

// alarm upon any pin change, since bouncing switches can cause a state check like this to

// misread the pin. When hard limits are triggered, they should be 100% reliable, which is the

// reason that this option is disabled by default. Only if your system/electronics can guarantee

// that the switches don't bounce, we recommend enabling this option. This will help prevent

// triggering a hard limit when the machine disengages from the switch.

// NOTE: This option has no effect if SOFTWARE DEBOUNCE is enabled.

// #define HARD LIMIT FORCE STATE CHECK // Default disabled. Uncomment to enable.

/
// COMPILE-TIME ERROR CHECKING OF DEFINE VALUES:

#ifndef HOMING_CYCLE 0
#error "Required HOMING_CYCLE_0 not defined."
#endif

#if defined(USE_SPINDLE DIR AS ENABLE PIN) && !defined(VARIABLE SPINDLE)

#error "USE_SPINDLE DIR _AS ENABLE PIN may only be used with VARIABLE SPINDLE
enabled"
#endif

#if defined(USE_SPINDLE DIR AS ENABLE PIN) && !defined(CPU_MAP ATMEGA328P)
#error "USE _SPINDLE DIR AS ENABLE PIN may only be used with a 328p processor"
#endif

//
#endif
Pemrograman C.2 Coolant Control
/*
coolant _control.h - spindle control methods
Part of Grbl

Copyright (c) 2012-2015 Sungeun K. Jeon

Grbl is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

Grbl is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef coolant _control h
#define coolant_control h

void coolant _init();

void coolant_stop();

void coolant_set_state(uint8 t mode);
void coolant run(uint8 t mode);

#endif
Pemrograman C.3 CPU Map
/*
cpu_map.h - CPU and pin mapping configuration file
Part of Grbl

Copyright (c) 2012-2015 Sungeun K. Jeon

Grbl is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

Grbl is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/

/* The cpu_map.h files serve as a central pin mapping selection file for different processor
types, i.e. AVR 328p or AVR Mega 2560. Each processor has its own pin mapping file.
(i.e. cpu_map atmega328p.h) Grbl officially supports the Arduino Uno, but the
other supplied pin mappings are supplied by users, so your results may vary. */

// NOTE: With new processors, only add the define name and filename to use.

#ifndef cpu_map h
#define cpu_map h

#ifdef CPU_MAP ATMEGA328P // (Arduino Uno) Officially supported by Grbl.
#include "cpu_map/cpu_map_atmega328p.h"
#endif

#ifdef CPU_MAP_ATMEGA2560 // (Arduino Mega 2560) Working @EliteEng
#include "cpu_map/cpu_map_atmega2560.h"
#endif

/*

#ifdef CPU_MAP CUSTOM_PROC
// For a custom pin map or different processor, copy and edit one of the available cpu
// map files and moditfy it to your needs. Make sure the defined name is also changed in
// the config.h file.

#endif

*/
#endif
Pemrograman C.4 Defaults
/*
defaults.h - defaults settings configuration file
Part of Grbl

Copyright (c) 2012-2015 Sungeun K. Jeon

Grbl is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

Grbl is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/

/* The defaults.h file serves as a central default settings selector for different machine
types, from DIY CNC mills to CNC conversions of off-the-shelf machines. The settings
files listed here are supplied by users, so your results may vary. However, this should
give you a good starting point as you get to know your machine and tweak the settings for
your nefarious needs.
Ensure one and only one of these DEFAULTS XXX values is defined in config.h */

#ifndef defaults_h

// Only define the DEFAULT XXX with where to find the corresponding default XXX h file.
// Don't #define defaults h here, let the selected file do it. Prevents including more than one.

#ifdef DEFAULTS_ GENERIC
// Grbl generic default settings. Should work across different machines.
#include "defaults/defaults generic.h"

#endif

#ifdef DEFAULTS_SHERLINE 5400
/I Description: Sherline 5400 mill with three NEMA 23 Keling KL23H256-21-8B 185 oz-in
stepper motors,
// driven by three Pololu A4988 stepper drivers with a 30V, 6A power supply at 1.5A per winding.
#include "defaults/defaults_sherline.h"
#endif

#ifdef DEFAULTS_SHAPEOKO
// Description: Shapeoko CNC mill with three NEMA 17 stepper motors, driven by Synthetos
// grblShield with a 24V, 4.2A power supply.
#include "defaults/defaults shapeoko.h"

#endif

#ifdef DEFAULTS SHAPEOKO 2
/I Description: Shapeoko CNC mill with three NEMA 17 stepper motors, driven by Synthetos
// grblShield at 28V.

#include "defaults/defaults shapeoko2.h"
#endif

#ifdef DEFAULTS SHAPEOKO 3
// Description: Shapeoko CNC mill with three NEMA 23 stepper motors, driven by CarbideMotion
#include "defaults/defaults shapeoko3.h"

#endif

#ifdef DEFAULTS X CARVE 500MM
// Description: X-Carve 3D Carver CNC mill with three 200 step/rev motors driven by Synthetos
// grblShield at 24V.
#include "defaults/defaults x carve 500mm.h"

#endif

#ifdef DEFAULTS X CARVE_1000MM
// Description: X-Carve 3D Carver CNC mill with three 200 step/rev motors driven by Synthetos
// grblShield at 24V.
#include "defaults/defaults x carve 1000mm.h"

#endif

#ifdef DEFAULTS ZEN TOOLWORKS 7x7

// Description: Zen Toolworks 7x7 mill with three Shinano SST43D2121 650z-in NEMA 17 stepper
motors.

// Leadscrew 1is different from some ZTW Kkits, where most are 1.25mm/rev rather than 8.0mm/rev
here.

// Driven by 30V, 6A power supply and TI DRV8811 stepper motor drivers.

#include "defaults/defaults_zen toolworks 7x7.h"
#endif

#ifdef DEFAULTS_OXCNC
/1 Grbl settings for OpenBuilds OX CNC Machine
// http://www.openbuilds.com/builds/openbuilds-ox-cnc-machine.341/
#include "defaults/defaults_oxcnc.h"

#endif

#ifdef DEFAULTS SIMULATOR
/1 Settings only for Grbl Simulator (www.github.com/grbl/grbl-sim)
#include "defaults/defaults_simulator.h"

#endif

#endif

Pemrograman C.5 Eeprom

/*
eeprom.h - EEPROM methods
Part of Grbl

Copyright (c) 2009-2011 Simen Svale Skogsrud

Grbl is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

Grbl is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/

#ifndef eeprom_h
#define eeprom_h

unsigned char eeprom_get char(unsigned int addr);

void eeprom_put_char(unsigned int addr, unsigned char new_value);

void memcpy_to_eeprom_with_checksum(unsigned int destination, char *source, unsigned int size);
int memcpy_from_eeprom_with checksum(char *destination, unsigned int source, unsigned int size);

#endif

Pemrograman C.6 G-code

/*
gcode.h - rs274/ngc parser.
Part of Grbl

Copyright (c) 2011-2015 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud

Grbl is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

Grbl is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/

#ifndef gcode h
#define gcode h

// Define modal group internal numbers for checking multiple command violations and tracking the
// type of command that is called in the block. A modal group is a group of g-code commands that are
// mutually exclusive, or cannot exist on the same line, because they each toggle a state or execute

// 'a unique motion. These are defined in the NIST RS274-NGC v3 g-code standard, available online,
// and are similar/identical to other g-code interpreters by manufacturers (Haas,Fanuc,Mazak,etc).

// NOTE: Modal group define values must be sequential and starting from zero.

#define MODAL GROUP_GO 0/ [G4,G10,G28,G28.1,G30,G30.1,G53,G92,G92.1] Non-modal
#define MODAL GROUP Gl 1 //[G0,G1,G2,G3,G38.2,G38.3,G38.4,G38.5,G80] Motion

#define MODAL GROUP_G2 2 //[G17,G18,G19] Plane selection

#define MODAL GROUP_G3 3 // [G90,G91] Distance mode

#define MODAL GROUP_G4 4 // [G91.1] Arc IJK distance mode

#define MODAL GROUP_GS5 5 //[G93,G94] Feed rate mode

#define MODAL GROUP_G6 6 // [G20,G21] Units

#define MODAL GROUP_G7 7 // [G40] Cutter radius compensation mode. G41/42 NOT
SUPPORTED.

#define MODAL GROUP_G8 8 // [G43.1,G49] Tool length offset

#define MODAL GROUP G129 // [G54,G55,G56,G57,G58,G59] Coordinate system selection

#define MODAL GROUP_G13 10 // [G61] Control mode

#define MODAL GROUP M4 11 //[M0,M1,M2,M30] Stopping
#define MODAL GROUP_M7 12 // [M3,M4,M5] Spindle turning
#define MODAL GROUP_MS8 13 // [M7,M8,M9] Coolant control

// #define OTHER_INPUT _F 14
// #define OTHER_INPUT S 15
// #define OTHER_INPUT T 16

// Define command actions for within execution-type modal groups (motion, stopping, non-modal).
Used
// internally by the parser to know which command to execute.

// Modal Group GO: Non-modal actions

#define NON_MODAL NO_ACTION 0 // (Default: Must be zero)
#define NON_MODAL DWELL 1// G4

#define NON_MODAL SET COORDINATE DATA 2//G10
#define NON_MODAL GO HOME 0 3// G28

#define NON_MODAL SET HOME 04 // G28.1

#define NON_MODAL GO HOME 1 5//G30

#define NON_MODAL SET HOME 1 6 // G30.1

#define NON_MODAL ABSOLUTE OVERRIDE 7 // G53
#define NON_MODAL _SET _COORDINATE OFFSET 8 // G92
#define NON_MODAL RESET COORDINATE OFFSET 9 //G92.1

// Modal Group G1: Motion modes

#define MOTION_ MODE SEEK 0 // GO (Default: Must be zero)
#define MOTION_MODE_LINEAR 1// Gl

#define MOTION_MODE CW_ARC2 // G2

#define MOTION_MODE CCW_ARC3 //G3

#define MOTION_MODE PROBE TOWARD 4 // G38.2 NOTE: G38.2, G38.3, G38.4, G38.5 must
be sequential. See report_gcode modes().

#define MOTION_MODE PROBE TOWARD NO ERROR 5// G38.3
#define MOTION_MODE PROBE AWAY 6// G38.4

#define MOTION_MODE PROBE AWAY NO ERROR 7// G38.5
#define MOTION_MODE _NONE 8 // G80

// Modal Group G2: Plane select

#define PLANE SELECT_ XY 0// G17 (Default: Must be zero)
#define PLANE _SELECT ZX 1// G18

#define PLANE SELECT YZ2// G19

// Modal Group G3: Distance mode
#define DISTANCE_MODE_ABSOLUTE 0 // G90 (Default: Must be zero)
#define DISTANCE_MODE_INCREMENTAL 1 // G91

// Modal Group G4: Arc IJK distance mode
#define DISTANCE_ARC MODE INCREMENTAL 0 // G91.1 (Default: Must be zero)

// Modal Group M4: Program flow

#define PROGRAM_FLOW_RUNNING 0 // (Default: Must be zero)
#define PROGRAM FLOW_PAUSED 1 // M0, M1

#define PROGRAM _FLOW_COMPLETED 2 // M2, M30

// Modal Group G5: Feed rate mode
#define FEED RATE MODE UNITS PER MIN 0 // G94 (Default: Must be zero)
#define FEED_ RATE MODE _ INVERSE TIME 1 // G93

// Modal Group G6: Units mode

#define UNITS MODE MM 0 // G21 (Default: Must be zero)
#define UNITS_ MODE_INCHES 1 // G20

// Modal Group G7: Cutter radius compensation mode
#define CUTTER_COMP_DISABLE 0 // G40 (Default: Must be zero)

// Modal Group G13: Control mode
#define CONTROL MODE EXACT PATH 0 // G61 (Default: Must be zero)

// Modal Group M7: Spindle control

#define SPINDLE _DISABLE 0 // M5 (Default: Must be zero)
#define SPINDLE_ENABLE CW 1// M3

#define SPINDLE_ENABLE _CCW 2 // M4

// Modal Group M8: Coolant control

#define COOLANT _DISABLE 0 // M9 (Default: Must be zero)
#define COOLANT MIST ENABLE 1 // M7

#define COOLANT _FLOOD ENABLE 2 // M8

// Modal Group G8: Tool length offset
#define TOOL_LENGTH_OFFSET CANCEL 0 // G49 (Default: Must be zero)
#define TOOL_LENGTH_OFFSET_ENABLE DYNAMIC 1 // G43.1

// Modal Group G12: Active work coordinate system
/I N/A: Stores coordinate system value (54-59) to change to.

// Define parameter word mapping.
#define WORD F 0

#define WORD 1 1

#define WORD J 2

#define WORD K
#define WORD L
#define WORD N
#define WORD_ P
#define WORD R
#define WORD_S
#define WORD T
#define WORD X 10
#define WORD_ Y 11
#define WORD Z 12

O X0 Q9D wnm P w

// NOTE: When this struct is zeroed, the above defines set the defaults for the system.

typedef struct {

uint8_t motion; /1 {G0,G1,G2,G3,G38.2,G80}
uint8 t feed rate; /1 {G93,G9%4}
uint8 t units; // {G20,G21}
uint8_t distance; /1 {G90,G91}

//uint8_t distance arc; / {G91.1} NOTE: Don't track. Only default supported.
uint8_t plane_select; /I {G17,G18,G19}
//uint8 _t cutter comp; // {G40} NOTE: Don't track. Only default supported.

uint8 t tool length; // {G43.1,G49}

uint8_t coord select; /1 {G54,G55,G56,G57,G58,G59}

// uint8_t control; /I {G61} NOTE: Don't track. Only default supported.
uint8 t program_flow; // {MO0,M1,M2,M30}

uint§_t coolant; /I {M7,M8,M9}

uint8_t spindle; /l {M3,M4,M5}

} gc_modal t;

typedef struct {

float f; // Feed

float ijk[3]; //' 1,JLK Axis arc offsets

uint8 tl; // G10 or canned cycles parameters
int32 tn; // Line number

float p; // G10 or dwell parameters

// float q; /I G82 peck drilling

float r; /I Arc radius

float s; // Spindle speed

uint8 tt; // Tool selection

float xyz[3]; /I X,Y,Z Translational axes
} gc_values_t;

typedef struct {
gc_modal t modal;

float spindle_speed; // RPM

float feed_rate; // Millimeters/min

uint8 t tool; // Tracks tool number. NOT USED.

int32_t line number; // Last line number sent

float position[N_AXIS]; //' Where the interpreter considers the tool to be at this point in the
code

float coord_system[N AXIS]; // Current work coordinate system (G54+). Stores offset from
absolute machine
// position in mm. Loaded from EEPROM when called.
float coord_offset[N_AXIS]; // Retains the G92 coordinate offset (work coordinates) relative to
// machine zero in mm. Non-persistent. Cleared upon reset and
boot.
float tool length offset; // Tracks tool length offset value when enabled.
} parser_state t;
extern parser_state_t gc_state;

typedef struct {

/" uintl6_t command words; // NOTE: If this bitflag variable fills, G and M words can be
separated.

/" uintl6_t value words;

uint§ tnon _modal command;
gc_modal t modal;

gc_values_t values;

} parser_block t;
extern parser_block t gc block;

// Initialize the parser
void gc_init();

/I Execute one block of rs275/ngc/g-code
uint8 t gc execute line(char *line);

// Set g-code parser position. Input in steps.
void gc_sync_position();

#endif

Pemrograman C.7 Grbl

/*
grbl.h - main Grbl include file
Part of Grbl

Copyright (c) 2015 Sungeun K. Jeon

Grbl is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

Grbl is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/

#ifndef grbl h
#define grbl h

/I Grbl versioning system
#define GRBL_VERSION "0.9j"
#define GRBL_VERSION BUILD "20160726"

// Define standard libraries used by Grbl.
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <avr/interrupt.h>
#include <avr/wdt.h>
#include <util/delay.h>
#include <math.h>
#include <inttypes.h>
#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>

// Define the Grbl system include files. NOTE: Do not alter organization.
#include "config.h"
#include "nuts_bolts.h"
#include "settings.h"
#include "system.h"
#include "defaults.h"
#include "cpu_map.h"
#include "coolant_control.h"
#include "eeprom.h"
#include "gcode.h"

#include "limits.h"

#include "motion_control.h"
#include "planner.h"
#include "print.h"

#include "probe.h"

#include "protocol.h"
#include "report.h"

#include "serial.h"

#include "spindle control.h"
#include "stepper.h"

#endif

Pemrograman C.8 Limits

/*
limits.h - code pertaining to limit-switches and performing the homing cycle
Part of Grbl

Copyright (c) 2012-2015 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud

Grbl is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

Grbl is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/

#ifndef limits_h

#define limits_h

// Initialize the limits module
void limits_init();

// Disables hard limits.
void limits_disable();

// Returns limit state as a bit-wise uint8 variable.
uint8 t limits_get state();

// Perform one portion of the homing cycle based on the input settings.
void limits go home(uint8 t cycle mask);

/I Check for soft limit violations
void limits_soft check(float *target);

#endif

Pemrograman C.9 Motion Control

/*
motion_control.h - high level interface for issuing motion commands
Part of Grbl

Copyright (c) 2011-2015 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud

Grbl is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Grbl is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/

#ifndef motion _control h
#define motion_control_h

#define HOMING_CYCLE_LINE_NUMBER -1

// Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
// unless invert_feed_rate is true. Then the feed rate means that the motion should be completed in
/I (1 minute)/feed rate time.

#ifdef USE_LINE_NUMBERS

void mc_line(float *target, float feed rate, uint8 tinvert feed rate, int32 tline number);

#else

void mc_line(float *target, float feed rate, uint8 t invert feed rate);

#endif

// Execute an arc in offset mode format. position == current Xyz, target == target xyz,
/I offset == offset from current xyz, axis XXX defines circle plane in tool space, axis_linear is
// the direction of helical travel, radius == circle radius, is_clockwise arc boolean. Used
// for vector transformation direction.
#ifdef USE_LINE_NUMBERS
void mec_arc(float *position, float *target, float *offset, float radius, float feed rate,
uint8 t invert feed rate, wuint§ t axis 0, uint8 t axis 1, wuint8 t axis linear, wuint8 t
is_clockwise arc, int32 tline number);
#else
void mc_arc(float *position, float *target, float *offset, float radius, float feed rate,
uint§ t invert feed rate, uint§ t axis 0, wuint8 t axis I, uint8 t axis linear, uint§ t
is_clockwise arc);
#endif

// Dwell for a specific number of seconds
void mc_dwell(float seconds);

// Perform homing cycle to locate machine zero. Requires limit switches.
void me¢_homing_cycle();

// Perform tool length probe cycle. Requires probe switch.

#ifdef USE_LINE NUMBERS

void mc_probe cycle(float *target, float feed rate, uint8 t invert feed rate, uint8 tis_probe away,
uint§ tis no_error, int32_t line number);

#else

void mc_probe cycle(float *target, float feed rate, uint8 t invert feed rate, uint8 tis probe away,
uint8 tis no_error);

#endif

// Performs system reset. If in motion state, kills all motion and sets system alarm.
void mc_reset();

| #endif

Pemrograman C.10 Nuts Bolts

/*
nuts_bolts.h - Header file for shared definitions, variables, and functions
Part of Grbl

Copyright (c) 2011-2015 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud

Grbl is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

Grbl is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/

#ifndef nuts bolts h
#define nuts_bolts_h

#define false 0
#define true 1

/I Axis array index values. Must start with 0 and be continuous.
#define N_AXIS 3 // Number of axes

#define X AXIS 0 // Axis indexing value.

#define Y _AXIS 1

#define Z AXIS 2

// #define A_AXIS 3

/I CoreXY motor assignments. DO NOT ALTER.
/I NOTE: If the A and B motor axis bindings are changed, this effects the CoreXY equations.
#ifdef COREXY
#define A MOTOR X AXIS // Must be X AXIS
#define B_MOTOR Y_AXIS // Must be Y_AXIS
#endif

// Conversions

#define MM_PER_INCH (25.40)

#define INCH_PER_MM (0.0393701)

#define TICKS PER_MICROSECOND (F_CPU/1000000)

/I Useful macros

#define clear vector(a) memset(a, 0, sizeof(a))

#define clear vector float(a) memset(a, 0.0, sizeof(float)*N AXIS)
// #define clear_vector long(a) memset(a, 0.0, sizeof(long)*N_AXIS)
#define max(a,b) (((a) > (b)) ? (a) : (b))

#define min(a,b) (((a) < (b)) ? (a) : (b))

// Bit field and masking macros
#define bit(n) (1 <<n)

#define bit_true atomic(x,mask) {uint8 t sreg = SREG; cli(); (x) |= (mask); SREG = sreg; }
#define bit false atomic(x,mask) {uint8 t sreg = SREG; cli(); (x) &= ~(mask); SREG =sreg; }
#define bit toggle atomic(x,mask) {uint8 t sreg = SREG; cli(); (x) = (mask); SREG = sreg; }
#define bit_true(x,mask) (x) |= (mask)

#define bit false(x,mask) (x) &= ~(mask)

#define bit_istrue(x,mask) ((x & mask) !=0)

#define bit isfalse(x,mask) ((x & mask) == 0)

// Read a floating point value from a string. Line points to the input buffer, char counter
// is the indexer pointing to the current character of the line, while float ptr is

// a pointer to the result variable. Returns true when it succeeds

uint8 tread float(char *line, uint8 t *char counter, float *float ptr);

// Delays variable-defined milliseconds. Compiler compatibility fix for _delay ms().
void delay ms(uint16_t ms);

// Delays variable-defined microseconds. Compiler compatibility fix for _delay us().
void delay _us(uint32_t us);

// Computes hypotenuse, avoiding avr-gcc's bloated version and the extra error checking.
float hypot f(float x, float y);

#endif

Pemrograman C.11 Planner

/*
planner.h - buffers movement commands and manages the acceleration profile plan
Part of Grbl

Copyright (¢) 2011-2015 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud

Grbl is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

Grbl is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/

#ifndef planner_h
#define planner h

// ' The number of linear motions that can be in the plan at any give time
#ifndef BLOCK BUFFER SIZE
#ifdef USE LINE NUMBERS
#define BLOCK BUFFER SIZE 16
#else
#define BLOCK_BUFFER_SIZE 18
#endif
#endif

// This struct stores a linear movement of a g-code block motion with its critical "nominal" values
// are as specified in the source g-code.
typedef struct {

// Fields used by the bresenham algorithm for tracing the line

// NOTE: Used by stepper algorithm to execute the block correctly. Do not alter these values.

uint8_t direction_bits; /I The direction bit set for this block (refers to * DIRECTION_BIT in
config.h)

uint32_t steps[N_AXIS]; // Step count along each axis

uint32 t step event count; / The maximum step axis count and number of steps required to
complete this block.

// Fields used by the motion planner to manage acceleration

float entry_speed sqr; // ' The current planned entry speed at block junction in (mm/min)"2

float max_entry speed_sqr; // Maximum allowable entry speed based on the minimum of
junction limit and

/! neighboring nominal speeds with overrides in

(mm/min)"2

float max_junction_speed sqr; // Junction entry speed limit based on direction vectors in
(mm/min)"2

float nominal speed_sqr; /I Axis-limit adjusted nominal speed for this block in (mm/min)"2

float acceleration; /I Axis-limit adjusted line acceleration in (mm/min”2)

float millimeters; // The remaining distance for this block to be executed in (mm)

//uint8 t max_override; // Maximum override value based on axis speed limits

#ifdef USE_LINE NUMBERS
int32 tline number;
#endif
} plan_block t;

// Initialize and reset the motion plan subsystem
void plan_reset();

// Add a new linear movement to the buffer. target{/N AXIS] is the signed, absolute target position
// in millimeters. Feed rate specifies the speed of the motion. If feed rate is inverted, the feed
// rate is taken to mean "frequency" and would complete the operation in 1/feed rate minutes.
#ifdef USE_LINE NUMBERS
void plan_buffer line(float *target, float feed rate, uint8 t invert feed rate, int32 t line number);
#else
void plan_buffer line(float *target, float feed rate, uint8 t invert feed rate);
#endif

// Called when the current block is no longer needed. Discards the block and makes the memory
// availible for new blocks.

void plan_discard current block();

/I Gets the current block. Returns NULL if buffer empty
plan_block t *plan_get current block();

// Called periodically by step segment buffer. Mostly used internally by planner.
uint8_t plan_next block index(uint8 t block index);

// Called by step segment buffer when computing executing block velocity profile.
float plan_get exec_block exit_speed();

/I Reset the planner position vector (in steps)
void plan_sync_position();

// Reinitialize plan with a partially completed block

void plan_cycle reinitialize();

// Returns the number of active blocks are in the planner buffer.
uint8 t plan_get block buffer count();

// Returns the status of the block ring buffer. True, if buffer is full.
uint8 t plan_check full buffer();

#endif
Pemrograman C.12 Print
/*
print.h - Functions for formatting output strings
Part of Grbl

Copyright (¢) 2011-2015 Sungeun K. Jeon
Copyright (¢) 2009-2011 Simen Svale Skogsrud

Grbl is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef print_h

#define print_h

void printString(const char *s);

void printPgmString(const char *s);

void printInteger(long n);

void print_uint32 baselO(uint32_t n);

// Prints uint8 variable with base and number of desired digits.
void print_unsigned int8(uint8 t n, uint8 t base, uint§_t digits);

// Prints an uint8 variable in base 2.
void print uint8 base2(uint8 t n);

// Prints an uint8 variable in base 10.
void print uint8 baselO(uint8 t n);

void printFloat(float n, uint8 t decimal places);
// Floating value printing handlers for special variables types used in Grbl.

/I - CoordValue: Handles all position or coordinate values in inches or mm reporting.
/I - RateValue: Handles feed rate and current velocity in inches or mm reporting.

/I - SettingValue: Handles all floating point settings values (always in mm.)
void printFloat CoordValue(float n);

void printFloat RateValue(float n);
void printFloat SettingValue(float n);

// Debug tool to print free memory in bytes at the called point. Not used otherwise.
void printFreeMemory();

#endif
Pemrograman C.13 Probe
/*
probe.h - code pertaining to probing methods
Part of Grbl

Copyright (c) 2014-2015 Sungeun K. Jeon

Grbl is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

Grbl is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http:/www.gnu.org/licenses/>.
*/

#ifndef probe h
#define probe_h

// ' Values that define the probing state machine.
#define PROBE_OFF 0 // Probing disabled or not in use. (Must be zero.)
#define PROBE_ACTIVE 1 // Actively watching the input pin.

// Probe pin initialization routine.
void probe_init();

// Called by probe_init() and the mc_probe() routines. Sets up the probe pin invert mask to
// appropriately set the pin logic according to setting for normal-high/normal-low operation
// and the probing cycle modes for toward-workpiece/away-from-workpiece.

void probe configure invert mask(uint8 tis_probe away);

// Returns probe pin state. Triggered = true. Called by gcode parser and probe state monitor.
uint8 t probe get state();

// Monitors probe pin state and records the system position when detected. Called by the
// stepper ISR per ISR tick.

void probe_state_monitor();

#endif

Pemrograman C.14 Protocol

/ *
protocol.h - controls Grbl execution protocol and procedures
Part of Grbl

Copyright (c) 2011-2015 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud

Grbl is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

Grbl is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/

#ifndef protocol h
#define protocol h

// Line buffer size from the serial input stream to be executed.
// NOTE: Not a problem except for extreme cases, but the line buffer size can be too small
// and g-code blocks can get truncated. Officially, the g-code standards support up to 256
// characters. In future versions, this will be increased, when we know how much extra
// memory space we can invest into here or we re-write the g-code parser not to have this
// buffer.
#ifndef LINE BUFFER SIZE

#define LINE_BUFFER_SIZE 80
#endif

// Starts Grbl main loop. It handles all incoming characters from the serial port and executes
// them as they complete. It is also responsible for finishing the initialization procedures.
void protocol_main_loop();

/I Checks and executes a realtime command at various stop points in main program
void protocol execute realtime();

/I Notify the stepper subsystem to start executing the g-code program in buffer.
// void protocol_cycle start();

// Reinitializes the buffer after a feed hold for a resume.
// void protocol cycle reinitialize();

// Initiates a feed hold of the running program
// void protocol_feed hold();

/I Executes the auto cycle feature, if enabled.
void protocol auto cycle_start();

// Block until all buffered steps are executed
void protocol buffer synchronize();

#endif

Pemrograman C.15 Report

/*
report.h - reporting and messaging methods

Part of Grbl
Copyright (c) 2012-2015 Sungeun K. Jeon

Grbl is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

Grbl is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef report h

#define report_h

// Define Grbl status codes.

#define STATUS _OK 0

#define STATUS EXPECTED _COMMAND LETTER 1
#define STATUS BAD NUMBER _FORMAT 2
#define STATUS_INVALID STATEMENT 3

#define STATUS NEGATIVE VALUE 4

#define STATUS_SETTING DISABLED 5

#define STATUS_SETTING_STEP_PULSE_ MIN 6
#define STATUS_SETTING _READ_FAIL 7

#define STATUS IDLE_ERROR 8

#define STATUS_ALARM_LOCK 9

#define STATUS_SOFT_LIMIT_ERROR 10

#define STATUS OVERFLOW 11

#define STATUS_MAX_STEP_RATE_EXCEEDED 12

#define STATUS._ GCODE_UNSUPPORTED_COMMAND 20
#define STATUS_GCODE_MODAL_GROUP_VIOLATION 21
#define STATUS_GCODE_UNDEFINED _FEED RATE 22
#define STATUS_GCODE_COMMAND VALUE NOT INTEGER 23
#define STATUS_GCODE_AXIS_COMMAND_CONFLICT 24
#define STATUS_GCODE_WORD_REPEATED 25

#define STATUS_GCODE_NO_AXIS_WORDS 26

#define STATUS_GCODE_INVALID_LINE_NUMBER 27
#define STATUS_GCODE_VALUE_WORD_MISSING 28
#define STATUS_GCODE_UNSUPPORTED COORD_SYS 29
#define STATUS_GCODE_G53_INVALID MOTION_MODE 30
#define STATUS_GCODE_AXIS_WORDS_EXIST 31

#define STATUS_GCODE_NO_AXIS_WORDS_IN_PLANE 32
#define STATUS_GCODE_INVALID TARGET 33

#define STATUS_GCODE_ARC_RADIUS_ERROR 34

#define STATUS_GCODE_NO_OFFSETS_IN_PLANE 35
#define STATUS_GCODE_UNUSED_WORDS 36

#define STATUS_GCODE_G43_DYNAMIC_AXIS_ERROR 37

// Define Grbl alarm codes.

#define ALARM_HARD_LIMIT_ERROR 1
#define ALARM_SOFT_LIMIT_ERROR 2
#define ALARM_ABORT CYCLE 3
#define ALARM_PROBE_FAIL 4

#define ALARM_HOMING FAIL 5

/I Define Grbl feedback message codes.

#define MESSAGE_CRITICAL EVENT 1
#define MESSAGE_ALARM LOCK 2

#define MESSAGE_ALARM UNLOCK 3
#define MESSAGE ENABLED 4

#define MESSAGE DISABLED 5

#define MESSAGE SAFETY DOOR _AJAR 6
#define MESSAGE PROGRAM END 7
#define MESSAGE RESTORE DEFAULTS 8

// Prints system status messages.
void report_status_message(uint8_t status_code);

// Prints system alarm messages.
void report_alarm_message(int8 t alarm_code);

// Prints miscellaneous feedback messages.
void report_feedback message(uint8 t message code);

// Prints welcome message
void report_init_message();

// Prints Grbl help and current global settings
void report_grbl help();

// Prints Grbl global settings
void report_grbl_settings();

// Prints an echo of the pre-parsed line received right before execution.
void report_echo_line received(char *line);

// Prints realtime status report
void report_realtime_status();

// Prints recorded probe position
void report_probe parameters();

// Prints Grbl NGC parameters (coordinate offsets, probe)
void report_ngc_parameters();

// Prints current g-code parser mode state
void report_gcode _modes();

// Prints startup line
void report_startup_line(uint8_t n, char *line);

// Prints build info and user info
void report_build_info(char *line);

#endif

Pemrograman C.16 Serial

/*
serial.c - Low level functions for sending and recieving bytes via the serial port
Part of Grbl

Copyright (c) 2011-2015 Sungeun K. Jeon

Copyright (¢) 2009-2011 Simen Svale Skogsrud

Grbl is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

Grbl is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/

#ifndef serial h
#define serial h

#ifndef RX BUFFER_SIZE
#define RX BUFFER SIZE 128

#endif

#ifndef TX BUFFER SIZE
#define TX BUFFER_SIZE 64

#endif

#define SERIAL_NO_DATA Oxff

#ifdef ENABLE XONXOFF
#define RX BUFFER FULL 96 // XOFF high watermark
#define RX BUFFER _LOW 64 // XON low watermark
#define SEND XOFF 1
#define SEND XON 2
#define XOFF _SENT 3
#define XON_SENT 4
#define XOFF _CHAR 0x13
#define XON_CHAR 0x11
#endif

void serial init();

// ' Writes one byte to the TX serial buffer. Called by main program.
void serial write(uint8_t data);

// Fetches the first byte in the serial read buffer. Called by main program.
uint8 t serial read();

/I Reset and empty data in read buffer. Used by e-stop and reset.
void serial reset read_ buffer();

// Returns the number of bytes used in the RX serial buffer.
uint8 tserial get rx_buffer count();

// Returns the number of bytes used in the TX serial buffer.
// NOTE: Not used except for debugging and ensuring no TX bottlenecks.

uint8_t serial get tx buffer count();

#endif

Pemrograman C.17 Settings

/*
settings.h - eeprom configuration handling
Part of Grbl

Copyright (c) 2011-2015 Sungeun K. Jeon
Copyright (¢) 2009-2011 Simen Svale Skogsrud

Grbl is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

Grbl is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/

#ifndef settings h
#define settings h

#include "grbl.h"

/I Version of the EEPROM data. Will be used to migrate existing data from older versions of Grbl
// when firmware is upgraded. Always stored in byte 0 of eeprom
#define SETTINGS VERSION 9 // NOTE: Check settings reset() when moving to next version.

/I Define bit flag masks for the boolean settings in settings.flag.

#define BITFLAG_REPORT INCHES bit(0)

/I #define BITFLAG _AUTO_START bit(1) // Obsolete. Don't alter to keep back
compatibility.

#define BITFLAG_INVERT ST ENABLE bit(2)

#define BITFLAG_HARD_ LIMIT ENABLE bit(3)

#define BITFLAG_HOMING ENABLE bit(4)

#define BITFLAG_SOFT_LIMIT ENABLE bit(5)

#define BITFLAG_INVERT LIMIT_PINS bit(6)

#define BITFLAG_INVERT PROBE PIN bit(7)

// Define status reporting boolean enable bit flags in settings.status_report mask
#define BITFLAG_RT STATUS_MACHINE_POSITION bit(0)

#define BITFLAG_RT STATUS_WORK_POSITION bit(1)

#define BITFLAG_RT STATUS_PLANNER BUFFER bit(2)

#define BITFLAG_RT STATUS_SERIAL RX bit(3)

#define BITFLAG _RT _STATUS LIMIT PINS bit(4)

// Define settings restore bitflags.

#define SETTINGS RESTORE_ALL OxFF // All bitflags
#define SETTINGS RESTORE DEFAULTS bit(0)
#define SETTINGS RESTORE PARAMETERS bit(1)
#define SETTINGS RESTORE STARTUP LINES bit(2)
#define SETTINGS RESTORE BUILD INFO bit(3)

// Define EEPROM memory address location values for Grbl settings and parameters
// NOTE: The Atmega328p has 1IKB EEPROM. The upper half is reserved for parameters and

// the startup script. The lower half contains the global settings and space for future
/I developments.

#define EEPROM_ADDR GLOBAL 1U

#define EEPROM_ADDR PARAMETERS 512U

#define EEPROM_ADDR STARTUP BLOCK 768U

#define EEPROM_ADDR BUILD INFO 942U

/I Define EEPROM address indexing for coordinate parameters

#define N COORDINATE SYSTEM 6 // Number of supported work coordinate systems (from
index 1)

#define SETTING INDEX NCOORD N COORDINATE SYSTEM+1 // Total number of system
stored (from index 0)

/I NOTE: Work coordinate indices are (0=G54, 1=G55, ... , 6=G59)

#define SETTING _INDEX G28 N_COORDINATE SYSTEM // Home position 1

#define SETTING _INDEX G30 N_COORDINATE SYSTEM+1 // Home position 2

/I #define SETTING INDEX G92 N_COORDINATE SYSTEM+2 // Coordinate offset
(G92.2,G92.3 not supported)

/I Define Grbl axis settings numbering scheme. Starts at START VAL, every INCREMENT, over
N_SETTINGS.

#define AXIS N _SETTINGS 4

#define AXIS SETTINGS START VAL 100 / NOTE: Reserving settings values >= 100 for axis
settings. Up to 255.

#define AXIS SETTINGS INCREMENT 10 // Must be greater than the number of axis settings

/I Global persistent settings (Stored from byte EEPROM_ADDR_ GLOBAL onwards)
typedef struct {

/I Axis settings

float steps_per mm[N_AXIS];

float max_rate[N_AXIS];

float acceleration[N_AXIS];

float max_travel[N AXIS];

// Remaining Grbl settings

uint8 t pulse_microseconds;

uint8_t step_invert mask;

uint8_tdir_invert mask;

uint8_t stepper_idle lock time; // If max value 255, steppers do not disable.
uint8_t status_report mask; // Mask to indicate desired report data.

float junction_deviation;

float arc_tolerance;

uint8 t flags; // Contains default boolean settings

uint8 t homing_dir mask;
float homing_feed rate;
float homing_seek rate;
uintl6_t homing_debounce delay;
float homing_pulloff;
} settings_t;
extern settings t settings;

// Initialize the configuration subsystem (load settings from EEPROM)
void settings_init();

// Helper function to clear and restore EEPROM defaults
void settings_restore(uint8_t restore_flag);

/I A helper method to set new settings from command line
uint8 t settings store global setting(uint8 t parameter, float value);

// Stores the protocol line variable as a startup line in EEPROM
void settings_store startup line(uint8 t n, char *line);

// Reads an EEPROM startup line to the protocol line variable
uint8 t settings read startup line(uint8 t n, char *line);

// Stores build info user-defined string
void settings_store build info(char *line);

// Reads build info user-defined string
uint8_t settings read build info(char *line);

/I Writes selected coordinate data to EEPROM
void settings_write_coord data(uint8 t coord select, float *coord data);

// Reads selected coordinate data from EEPROM
uint8_t settings read coord data(uint8 t coord select, float *coord_data);

// Returns the step pin mask according to Grbl's internal axis numbering
uint8 t get step pin_mask(uint8 ti);

// Returns the direction pin mask according to Grbl's internal axis numbering
uint8 t get direction_pin_mask(uint8 t 1);

// Returns the limit pin mask according to Grbl's internal axis numbering
uint8 t get limit pin mask(uint8 t i);

#endif
Pemrograman C. 18 Spindle Control
/*
spindle_control.h - spindle control methods
Part of Grbl

Copyright (¢) 2012-2015 Sungeun K. Jeon
Copyright (¢) 2009-2011 Simen Svale Skogsrud

Grbl is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

Grbl is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef spindle control h

#define spindle control h

// Initializes spindle pins and hardware PWM, if enabled.

void spindle_init();

// Sets spindle direction and spindle rpm via PWM, if enabled.
void spindle run(uint8_t direction, float rpm);

void spindle_set state(uint8_t state, float rpm);

// Kills spindle.
void spindle_stop();

#endif

Pemrograman C.19 Stepper

/*
stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
Part of Grbl

Copyright (¢) 2011-2015 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud

Grbl is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

Grbl is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/

#ifndef stepper_h
#define stepper_h

#ifndef SEGMENT _BUFFER SIZE
#define SEGMENT BUFFER SIZE 6
#endif

// Initialize and setup the stepper motor subsystem
void stepper_init();

// Enable steppers, but cycle does not start unless called by motion control or realtime command.
void st wake up();

// Immediately disables steppers
void st_go_idle();

/I Generate the step and direction port invert masks.
void st_generate step dir invert masks();

// Reset the stepper subsystem variables
void st_reset();

// Reloads step segment buffer. Called continuously by realtime execution system.
void st_prep buffer();

// Called by planner_recalculate() when the executing block is updated by the new plan.
void st_update plan block parameters();

// Called by realtime status reporting if realtime rate reporting is enabled in config.h.
#ifdef REPORT REALTIME RATE

float st get realtime rate();

#endif

#endif

Pemrograman C.20 System

/*
system.h - Header for system level commands and real-time processes
Part of Grbl

Copyright (¢) 2014-2015 Sungeun K. Jeon

Grbl is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

Grbl is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/

#ifndef system_h
#define system_h

#include "grbl.h"

// Define system executor bit map. Used internally by realtime protocol as realtime command flags,
// which notifies the main program to execute the specified realtime command asynchronously.
// NOTE: The system executor uses an unsigned 8-bit volatile variable (8 flag limit.) The default
// flags are always false, so the realtime protocol only needs to check for a non-zero value to

// know when there is a realtime command to execute.

#define EXEC_STATUS_REPORT bit(0) // bitmask 00000001

#define EXEC_CYCLE_START bit(1) // bitmask 00000010

#define EXEC_CYCLE_STOP bit(2) // bitmask 00000100

#define EXEC_FEED HOLD bit(3) // bitmask 00001000

#define EXEC_RESET bit(4) // bitmask 00010000

#define EXEC_SAFETY_ DOOR bit(5) // bitmask 00100000

#define EXEC_MOTION_CANCEL bit(6) // bitmask 01000000

// Alarm executor bit map.

// NOTE: EXEC CRITICAL EVENT is an optional flag that must be set with an alarm flag. When
enabled,

// this halts Grbl into an infinite loop until the user aknowledges the problem and issues a soft-

// reset command. For example, a hard limit event needs this type of halt and aknowledgement.

#define EXEC CRITICAL EVENT bit(0) // bitmask 00000001 (SPECIAL FLAG. See NOTE:)
#define EXEC_ ALARM HARD LIMIT bit(1) // bitmask 00000010

#define EXEC ALARM SOFT LIMIT bit(2) // bitmask 00000100

#define EXEC_ALARM_ABORT CYCLE bit(3) // bitmask 00001000
#define EXEC_ALARM_PROBE_FAIL bit(4) // bitmask 00010000
#define EXEC_ALARM_HOMING FAIL bit(5) // bitmask 00100000

/I Define system state bit map. The state variable primarily tracks the individual functions

// of Grbl to manage each without overlapping. It is also used as a messaging flag for

// critical events.

#define STATE IDLE 0 // Must be zero. No flags.

#define STATE ALARM bit(0) / In alarm state. Locks out all g-code processes. Allows
settings access.

#define STATE CHECK _MODE bit(1) // G-code check mode. Locks out planner and motion

only.

#define STATE_ HOMING bit(2) // Performing homing cycle

#define STATE CYCLE bit(3) // Cycle is running or motions are being executed.
#define STATE _HOLD bit(4) // Active feed hold

#define STATE _SAFETY DOOR bit(5) // Safety door is ajar. Feed holds and de-energizes system.
#define STATE MOTION_CANCEL bit(6) // Motion cancel by feed hold and return to idle.

/I Define system suspend states.

#define SUSPEND DISABLE 0 // Must be zero.

#define SUSPEND ENABLE HOLD bit(0) / Enabled. Indicates the cycle is active and currently
undergoing a hold.

#define SUSPEND ENABLE READY bit(1) // Ready to resume with a cycle start command.
#define SUSPEND ENERGIZE bit(2) / Re-energizes output before resume.

#define SUSPEND MOTION_ CANCEL bit(3) // Cancels resume motion. Used by probing routine.

/I Define global system variables
typedef struct {

uint8 t abort; // System abort flag. Forces exit back to main loop for reset.

uint8 t state; // Tracks the current state of Grbl.

uint8 t suspend; // System suspend bitflag variable that manages holds, cancels,
and safety door.

uint8 t soft limit; // Tracks soft limit errors for the state machine. (boolean)

int32_t position[N_AXIS]; // Real-time machine (aka home) position vector in steps.

// NOTE: This may need to be a volatile variable, if problems
arise.

int32_t probe_ position[N_AXIS]; / Last probe position in machine coordinates and steps.

uint8_t probe succeeded,; // Tracks if last probing cycle was successful.

uint8 t homing axis lock; // Locks axes when limits engage. Used as an axis motion mask
in the stepper ISR.
} system_t;

extern system t sys;

volatile uint8 t sys probe state; // Probing state value. Used to coordinate the probing cycle with
stepper ISR.

volatile uint8 t sys rt exec state; // Global realtime executor bitflag variable for state management.
See EXEC bitmasks.

volatile uint8 t sys rt exec alarm; // Global realtime executor bitflag variable for setting various
alarms.

// Initialize the serial protocol
void system_init();

// Returns if safety door is open or closed, based on pin state.
uint8_t system_check safety door ajar();

// Executes an internal system command, defined as a string starting with a '$'
uint8 t system_execute line(char *line);

// Execute the startup script lines stored in EEPROM upon initialization
void system_execute_startup(char *line);

// Returns machine position of axis 'idx'. Must be sent a 'step' array.
float system convert axis_steps to_mpos(int32_t *steps, uint8 t idx);

// Updates a machine 'position’' array based on the 'step' array sent.
void system_convert_array steps_to_mpos(float *position, int32_t *steps);

/I CoreXY calculation only. Returns x or y-axis "steps" based on CoreXY motor steps.
#ifdef COREXY

int32_t system_convert corexy to_x axis_steps(int32_t *steps);

int32_t system_convert corexy to_y axis_steps(int32_t *steps);
#endif

#endif

D. Lampiran Gambar

Gambar D.1 Alat dan bahan

y the Future

= . S SR
= e PR R

Gambar D.3 Mesin CNC bersama penulis

