
Lampiran

A. Lampiran Tabel

Tabel A.1 ulir trapesium
(Sumber:http://machiningtool.blogspot.com/2014/09/macam-macam-jenis-ulir-types-of-thread.html)

B. Lampiran Arduino

Gambar B.1 Memastikan Port pada USB dari arduino terdeteksi di laptop/PC

Gambar B.2 Memasukan Grbl kedalam apk arduino

Gambar B.3 Kemudian membuka file Grbl yang telah di tambahkan

Gambar B.4 Tampilan program Grbl (program tidak di ubah-ubah), lalu upload

C. Lampiran Pemrograman Grbl

Pemrograman C.1 Config

/*
config.h - compile time configuration
Part of Grbl

Copyright (c) 2012-2015 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud

Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.

*/

// This file contains compile-time configurations for Grbl's internal system. For the most part,
// users will not need to directly modify these, but they are here for specific needs, i.e.
// performance tuning or adjusting to non-typical machines.

// IMPORTANT: Any changes here requires a full re-compiling of the source code to propagate them.

#ifndef config_h
#define config_h
#include "grbl.h" // For Arduino IDE compatibility.

// Default settings. Used when resetting EEPROM. Change to desired name in defaults.h
#define DEFAULTS_GENERIC

// Serial baud rate
#define BAUD_RATE 115200

// Default cpu mappings. Grbl officially supports the Arduino Uno only. Other processor types
// may exist from user-supplied templates or directly user-defined in cpu_map.h
#define CPU_MAP_ATMEGA328P // Arduino Uno CPU

// Define realtime command special characters. These characters are 'picked-off' directly from the
// serial read data stream and are not passed to the grbl line execution parser. Select characters
// that do not and must not exist in the streamed g-code program. ASCII control characters may be
// used, if they are available per user setup. Also, extended ASCII codes (>127), which are never in
// g-code programs, maybe selected for interface programs.
// NOTE: If changed, manually update help message in report.c.
#define CMD_STATUS_REPORT '?'
#define CMD_FEED_HOLD '!'
#define CMD_CYCLE_START '~'
#define CMD_RESET 0x18 // ctrl-x.
#define CMD_SAFETY_DOOR '@'

// If homing is enabled, homing init lock sets Grbl into an alarm state upon power up. This forces

// the user to perform the homing cycle (or override the locks) before doing anything else. This is
// mainly a safety feature to remind the user to home, since position is unknown to Grbl.
#define HOMING_INIT_LOCK // Comment to disable

// Define the homing cycle patterns with bitmasks. The homing cycle first performs a search mode
// to quickly engage the limit switches, followed by a slower locate mode, and finished by a short
// pull-off motion to disengage the limit switches. The following HOMING_CYCLE_x defines are
executed
// in order starting with suffix 0 and completes the homing routine for the specified-axes only. If
// an axis is omitted from the defines, it will not home, nor will the system update its position.
// Meaning that this allows for users with non-standard cartesian machines, such as a lathe (x then z,
// with no y), to configure the homing cycle behavior to their needs.
// NOTE: The homing cycle is designed to allow sharing of limit pins, if the axes are not in the same
// cycle, but this requires some pin settings changes in cpu_map.h file. For example, the default homing
// cycle can share the Z limit pin with either X or Y limit pins, since they are on different cycles.
// By sharing a pin, this frees up a precious IO pin for other purposes. In theory, all axes limit pins
// may be reduced to one pin, if all axes are homed with seperate cycles, or vice versa, all three axes
// on separate pin, but homed in one cycle. Also, it should be noted that the function of hard limits
// will not be affected by pin sharing.
// NOTE: Defaults are set for a traditional 3-axis CNC machine. Z-axis first to clear, followed by X &
Y.
#define HOMING_CYCLE_0 (1<<Z_AXIS) // REQUIRED: First move Z to clear
workspace.
#define HOMING_CYCLE_1 ((1<<X_AXIS)|(1<<Y_AXIS)) // OPTIONAL: Then move X,Y at the
same time.
// #define HOMING_CYCLE_2 // OPTIONAL: Uncomment and add
axes mask to enable

// Number of homing cycles performed after when the machine initially jogs to limit switches.
// This help in preventing overshoot and should improve repeatability. This value should be one or
// greater.
#define N_HOMING_LOCATE_CYCLE 1 // Integer (1-128)

// After homing, Grbl will set by default the entire machine space into negative space, as is typical
// for professional CNC machines, regardless of where the limit switches are located. Uncomment this
// define to force Grbl to always set the machine origin at the homed location despite switch
orientation.
// #define HOMING_FORCE_SET_ORIGIN // Uncomment to enable.

// Number of blocks Grbl executes upon startup. These blocks are stored in EEPROM, where the size
// and addresses are defined in settings.h. With the current settings, up to 2 startup blocks may
// be stored and executed in order. These startup blocks would typically be used to set the g-code
// parser state depending on user preferences.
#define N_STARTUP_LINE 2 // Integer (1-2)

// Number of floating decimal points printed by Grbl for certain value types. These settings are
// determined by realistic and commonly observed values in CNC machines. For example, position
// values cannot be less than 0.001mm or 0.0001in, because machines can not be physically more
// precise this. So, there is likely no need to change these, but you can if you need to here.
// NOTE: Must be an integer value from 0 to ~4. More than 4 may exhibit round-off errors.
#define N_DECIMAL_COORDVALUE_INCH 4 // Coordinate or position value in inches
#define N_DECIMAL_COORDVALUE_MM 3 // Coordinate or position value in mm
#define N_DECIMAL_RATEVALUE_INCH 1 // Rate or velocity value in in/min
#define N_DECIMAL_RATEVALUE_MM 0 // Rate or velocity value in mm/min
#define N_DECIMAL_SETTINGVALUE 3 // Decimals for floating point setting values

// If your machine has two limits switches wired in parallel to one axis, you will need to enable
// this feature. Since the two switches are sharing a single pin, there is no way for Grbl to tell
// which one is enabled. This option only effects homing, where if a limit is engaged, Grbl will
// alarm out and force the user to manually disengage the limit switch. Otherwise, if you have one

// limit switch for each axis, don't enable this option. By keeping it disabled, you can perform a
// homing cycle while on the limit switch and not have to move the machine off of it.
// #define LIMITS_TWO_SWITCHES_ON_AXES

// Allows GRBL to track and report gcode line numbers. Enabling this means that the planning buffer
// goes from 18 or 16 to make room for the additional line number data in the plan_block_t struct
#define USE_LINE_NUMBERS // Disabled by default. Uncomment to enable.

// Allows GRBL to report the real-time feed rate. Enabling this means that GRBL will be reporting
more
// data with each status update.
// NOTE: This is experimental and doesn't quite work 100%. Maybe fixed or refactored later.
// #define REPORT_REALTIME_RATE // Disabled by default. Uncomment to enable.

// Upon a successful probe cycle, this option provides immediately feedback of the probe coordinates
// through an automatically generated message. If disabled, users can still access the last probe
// coordinates through Grbl '$#' print parameters.
#define MESSAGE_PROBE_COORDINATES // Enabled by default. Comment to disable.

// Enables a second coolant control pin via the mist coolant g-code command M7 on the Arduino Uno
// analog pin 4. Only use this option if you require a second coolant control pin.
// NOTE: The M8 flood coolant control pin on analog pin 3 will still be functional regardless.
// #define ENABLE_M7 // Disabled by default. Uncomment to enable.

// This option causes the feed hold input to act as a safety door switch. A safety door, when triggered,
// immediately forces a feed hold and then safely de-energizes the machine. Resuming is blocked until
// the safety door is re-engaged. When it is, Grbl will re-energize the machine and then resume on the
// previous tool path, as if nothing happened.
// #define ENABLE_SAFETY_DOOR_INPUT_PIN // Default disabled. Uncomment to enable.

// After the safety door switch has been toggled and restored, this setting sets the power-up delay
// between restoring the spindle and coolant and resuming the cycle.
// NOTE: Delay value is defined in milliseconds from zero to 65,535.
#define SAFETY_DOOR_SPINDLE_DELAY 4000
#define SAFETY_DOOR_COOLANT_DELAY 1000

// Enable CoreXY kinematics. Use ONLY with CoreXY machines.
// IMPORTANT: If homing is enabled, you must reconfigure the homing cycle #defines above to
// #define HOMING_CYCLE_0 (1<<X_AXIS) and #define HOMING_CYCLE_1 (1<<Y_AXIS)
// NOTE: This configuration option alters the motion of the X and Y axes to principle of operation
// defined at (http://corexy.com/theory.html). Motors are assumed to positioned and wired exactly as
// described, if not, motions may move in strange directions. Grbl requires the CoreXY A and B motors
// have the same steps per mm internally.
// #define COREXY // Default disabled. Uncomment to enable.

// Inverts pin logic of the control command pins. This essentially means when this option is enabled
// you can use normally-closed switches, rather than the default normally-open switches.
// NOTE: If you require individual control pins inverted, keep this macro disabled and simply alter
// the CONTROL_INVERT_MASK definition in cpu_map.h files.
// #define INVERT_ALL_CONTROL_PINS // Default disabled. Uncomment to enable.

// Inverts select limit pin states based on the following mask. This effects all limit pin functions,
// such as hard limits and homing. However, this is different from overall invert limits setting.
// This build option will invert only the limit pins defined here, and then the invert limits setting
// will be applied to all of them. This is useful when a user has a mixed set of limit pins with both
// normally-open(NO) and normally-closed(NC) switches installed on their machine.
// NOTE: PLEASE DO NOT USE THIS, unless you have a situation that needs it.
// #define INVERT_LIMIT_PIN_MASK ((1<<X_LIMIT_BIT)|(1<<Y_LIMIT_BIT)) // Default
disabled. Uncomment to enable.

// Inverts the spindle enable pin from low-disabled/high-enabled to low-enabled/high-disabled. Useful
// for some pre-built electronic boards.
// NOTE: If VARIABLE_SPINDLE is enabled(default), this option has no effect as the PWM output
and
// spindle enable are combined to one pin. If you need both this option and spindle speed PWM,
// uncomment the config option USE_SPINDLE_DIR_AS_ENABLE_PIN below.
// #define INVERT_SPINDLE_ENABLE_PIN // Default disabled. Uncomment to enable.

// Enable control pin states feedback in status reports. The data is presented as simple binary of
// the control pin port (0 (low) or 1(high)), masked to show only the input pins. Non-control pins on the
// port will always show a 0 value. See cpu_map.h for the pin bitmap. As with the limit pin reporting,
// we do not recommend keeping this option enabled. Try to only use this for setting up a new CNC.
// #define REPORT_CONTROL_PIN_STATE // Default disabled. Uncomment to enable.

// When Grbl powers-cycles or is hard reset with the Arduino reset button, Grbl boots up with no
ALARM
// by default. This is to make it as simple as possible for new users to start using Grbl. When homing
// is enabled and a user has installed limit switches, Grbl will boot up in an ALARM state to indicate
// Grbl doesn't know its position and to force the user to home before proceeding. This option forces
// Grbl to always initialize into an ALARM state regardless of homing or not. This option is more for
// OEMs and LinuxCNC users that would like this power-cycle behavior.
// #define FORCE_INITIALIZATION_ALARM // Default disabled. Uncomment to enable.

// ---
// ADVANCED CONFIGURATION OPTIONS:

// Enables minimal reporting feedback mode for GUIs, where human-readable strings are not as
important.
// This saves nearly 2KB of flash space and may allow enough space to install other/future features.
// GUIs will need to install a look-up table for the error-codes that Grbl sends back in their place.
// NOTE: This feature is new and experimental. Make sure the GUI you are using supports this mode.
// #define REPORT_GUI_MODE // Default disabled. Uncomment to enable.

// The temporal resolution of the acceleration management subsystem. A higher number gives smoother
// acceleration, particularly noticeable on machines that run at very high feedrates, but may negatively
// impact performance. The correct value for this parameter is machine dependent, so it's advised to
// set this only as high as needed. Approximate successful values can widely range from 50 to 200 or
more.
// NOTE: Changing this value also changes the execution time of a segment in the step segment buffer.
// When increasing this value, this stores less overall time in the segment buffer and vice versa. Make
// certain the step segment buffer is increased/decreased to account for these changes.
#define ACCELERATION_TICKS_PER_SECOND 100

// Adaptive Multi-Axis Step Smoothing (AMASS) is an advanced feature that does what its name
implies,
// smoothing the stepping of multi-axis motions. This feature smooths motion particularly at low step
// frequencies below 10kHz, where the aliasing between axes of multi-axis motions can cause audible
// noise and shake your machine. At even lower step frequencies, AMASS adapts and provides even
better
// step smoothing. See stepper.c for more details on the AMASS system works.
#define ADAPTIVE_MULTI_AXIS_STEP_SMOOTHING // Default enabled. Comment to disable.

// Sets the maximum step rate allowed to be written as a Grbl setting. This option enables an error
// check in the settings module to prevent settings values that will exceed this limitation. The maximum
// step rate is strictly limited by the CPU speed and will change if something other than an AVR
running
// at 16MHz is used.
// NOTE: For now disabled, will enable if flash space permits.
// #define MAX_STEP_RATE_HZ 30000 // Hz

// By default, Grbl sets all input pins to normal-high operation with their internal pull-up resistors
// enabled. This simplifies the wiring for users by requiring only a switch connected to ground,
// although its recommended that users take the extra step of wiring in low-pass filter to reduce
// electrical noise detected by the pin. If the user inverts the pin in Grbl settings, this just flips
// which high or low reading indicates an active signal. In normal operation, this means the user
// needs to connect a normal-open switch, but if inverted, this means the user should connect a
// normal-closed switch.
// The following options disable the internal pull-up resistors, sets the pins to a normal-low
// operation, and switches must be now connect to Vcc instead of ground. This also flips the meaning
// of the invert pin Grbl setting, where an inverted setting now means the user should connect a
// normal-open switch and vice versa.
// NOTE: All pins associated with the feature are disabled, i.e. XYZ limit pins, not individual axes.
// WARNING: When the pull-ups are disabled, this requires additional wiring with pull-down resistors!
//#define DISABLE_LIMIT_PIN_PULL_UP
//#define DISABLE_PROBE_PIN_PULL_UP
//#define DISABLE_CONTROL_PIN_PULL_UP

// Sets which axis the tool length offset is applied. Assumes the spindle is always parallel with
// the selected axis with the tool oriented toward the negative direction. In other words, a positive
// tool length offset value is subtracted from the current location.
#define TOOL_LENGTH_OFFSET_AXIS Z_AXIS // Default z-axis. Valid values are X_AXIS,
Y_AXIS, or Z_AXIS.

// Enables variable spindle output voltage for different RPM values. On the Arduino Uno, the spindle
// enable pin will output 5V for maximum RPM with 256 intermediate levels and 0V when disabled.
// NOTE: IMPORTANT for Arduino Unos! When enabled, the Z-limit pin D11 and spindle enable pin
D12 switch!
// The hardware PWM output on pin D11 is required for variable spindle output voltages.
#define VARIABLE_SPINDLE // Default enabled. Comment to disable.

// Used by the variable spindle output only. These parameters set the maximum and minimum spindle
speed
// "S" g-code values to correspond to the maximum and minimum pin voltages. There are 256 discrete
and
// equally divided voltage bins between the maximum and minimum spindle speeds. So for a 5V pin,
1000
// max rpm, and 250 min rpm, the spindle output voltage would be set for the following "S" commands:
// "S1000" @ 5V, "S250" @ 0.02V, and "S625" @ 2.5V (mid-range). The pin outputs 0V when
disabled.
#define SPINDLE_MAX_RPM 24000.0 // Max spindle RPM. This value is equal to 100% duty cycle
on the PWM.
#define SPINDLE_MIN_RPM 0.0 // Min spindle RPM. This value is equal to (1/256) duty cycle
on the PWM.

// Used by variable spindle output only. This forces the PWM output to a minimum duty cycle when
enabled.
// When disabled, the PWM pin will still read 0V. Most users will not need this option, but it may be
// useful in certain scenarios. This setting does not update the minimum spindle RPM calculations. Any
// spindle RPM output lower than this value will be set to this value.
// #define MINIMUM_SPINDLE_PWM 5 // Default disabled. Uncomment to enable. Integer (0-255)

// By default on a 328p(Uno), Grbl combines the variable spindle PWM and the enable into one pin to
help
// preserve I/O pins. For certain setups, these may need to be separate pins. This configure option uses
// the spindle direction pin(D13) as a separate spindle enable pin along with spindle speed PWM on pin
D11.
// NOTE: This configure option only works with VARIABLE_SPINDLE enabled and a 328p processor
(Uno).
// NOTE: With no direction pin, the spindle clockwise M4 g-code command will be removed. M3 and
M5 still work.

// NOTE: BEWARE! The Arduino bootloader toggles the D13 pin when it powers up. If you flash Grbl
with
// a programmer (you can use a spare Arduino as "Arduino as ISP". Search the web on how to wire
this.),
// this D13 LED toggling should go away. We haven't tested this though. Please report how it goes!
// #define USE_SPINDLE_DIR_AS_ENABLE_PIN // Default disabled. Uncomment to enable.

// With this enabled, Grbl sends back an echo of the line it has received, which has been pre-parsed
(spaces
// removed, capitalized letters, no comments) and is to be immediately executed by Grbl. Echoes will
not be
// sent upon a line buffer overflow, but should for all normal lines sent to Grbl. For example, if a user
// sendss the line 'g1 x1.032 y2.45 (test comment)', Grbl will echo back in the form '[echo:
G1X1.032Y2.45]'.
// NOTE: Only use this for debugging purposes!! When echoing, this takes up valuable resources and
can effect
// performance. If absolutely needed for normal operation, the serial write buffer should be greatly
increased
// to help minimize transmission waiting within the serial write protocol.
#define REPORT_ECHO_LINE_RECEIVED // Default disabled. Uncomment to enable.

// Minimum planner junction speed. Sets the default minimum junction speed the planner plans to at
// every buffer block junction, except for starting from rest and end of the buffer, which are always
// zero. This value controls how fast the machine moves through junctions with no regard for
acceleration
// limits or angle between neighboring block line move directions. This is useful for machines that can't
// tolerate the tool dwelling for a split second, i.e. 3d printers or laser cutters. If used, this value
// should not be much greater than zero or to the minimum value necessary for the machine to work.
#define MINIMUM_JUNCTION_SPEED 0.0 // (mm/min)

// Sets the minimum feed rate the planner will allow. Any value below it will be set to this minimum
// value. This also ensures that a planned motion always completes and accounts for any floating-point
// round-off errors. Although not recommended, a lower value than 1.0 mm/min will likely work in
smaller
// machines, perhaps to 0.1mm/min, but your success may vary based on multiple factors.
#define MINIMUM_FEED_RATE 1.0 // (mm/min)

// Number of arc generation iterations by small angle approximation before exact arc trajectory
// correction with expensive sin() and cos() calcualtions. This parameter maybe decreased if there
// are issues with the accuracy of the arc generations, or increased if arc execution is getting
// bogged down by too many trig calculations.
#define N_ARC_CORRECTION 12 // Integer (1-255)

// The arc G2/3 g-code standard is problematic by definition. Radius-based arcs have horrible
numerical
// errors when arc at semi-circles(pi) or full-circles(2*pi). Offset-based arcs are much more accurate
// but still have a problem when arcs are full-circles (2*pi). This define accounts for the floating
// point issues when offset-based arcs are commanded as full circles, but get interpreted as extremely
// small arcs with around machine epsilon (1.2e-7rad) due to numerical round-off and precision issues.
// This define value sets the machine epsilon cutoff to determine if the arc is a full-circle or not.
// NOTE: Be very careful when adjusting this value. It should always be greater than 1.2e-7 but not too
// much greater than this. The default setting should capture most, if not all, full arc error situations.
#define ARC_ANGULAR_TRAVEL_EPSILON 5E-7 // Float (radians)

// Time delay increments performed during a dwell. The default value is set at 50ms, which provides
// a maximum time delay of roughly 55 minutes, more than enough for most any application. Increasing
// this delay will increase the maximum dwell time linearly, but also reduces the responsiveness of
// run-time command executions, like status reports, since these are performed between each dwell
// time step. Also, keep in mind that the Arduino delay timer is not very accurate for long delays.
#define DWELL_TIME_STEP 50 // Integer (1-255) (milliseconds)

// Creates a delay between the direction pin setting and corresponding step pulse by creating
// another interrupt (Timer2 compare) to manage it. The main Grbl interrupt (Timer1 compare)
// sets the direction pins, and does not immediately set the stepper pins, as it would in
// normal operation. The Timer2 compare fires next to set the stepper pins after the step
// pulse delay time, and Timer2 overflow will complete the step pulse, except now delayed
// by the step pulse time plus the step pulse delay. (Thanks langwadt for the idea!)
// NOTE: Uncomment to enable. The recommended delay must be > 3us, and, when added with the
// user-supplied step pulse time, the total time must not exceed 127us. Reported successful
// values for certain setups have ranged from 5 to 20us.
// #define STEP_PULSE_DELAY 10 // Step pulse delay in microseconds. Default disabled.

// The number of linear motions in the planner buffer to be planned at any give time. The vast
// majority of RAM that Grbl uses is based on this buffer size. Only increase if there is extra
// available RAM, like when re-compiling for a Mega or Sanguino. Or decrease if the Arduino
// begins to crash due to the lack of available RAM or if the CPU is having trouble keeping
// up with planning new incoming motions as they are executed.
// #define BLOCK_BUFFER_SIZE 18 // Uncomment to override default in planner.h.

// Governs the size of the intermediary step segment buffer between the step execution algorithm
// and the planner blocks. Each segment is set of steps executed at a constant velocity over a
// fixed time defined by ACCELERATION_TICKS_PER_SECOND. They are computed such that the
planner
// block velocity profile is traced exactly. The size of this buffer governs how much step
// execution lead time there is for other Grbl processes have to compute and do their thing
// before having to come back and refill this buffer, currently at ~50msec of step moves.
// #define SEGMENT_BUFFER_SIZE 6 // Uncomment to override default in stepper.h.

// Line buffer size from the serial input stream to be executed. Also, governs the size of
// each of the startup blocks, as they are each stored as a string of this size. Make sure
// to account for the available EEPROM at the defined memory address in settings.h and for
// the number of desired startup blocks.
// NOTE: 80 characters is not a problem except for extreme cases, but the line buffer size
// can be too small and g-code blocks can get truncated. Officially, the g-code standards
// support up to 256 characters. In future versions, this default will be increased, when
// we know how much extra memory space we can re-invest into this.
// #define LINE_BUFFER_SIZE 80 // Uncomment to override default in protocol.h

// Serial send and receive buffer size. The receive buffer is often used as another streaming
// buffer to store incoming blocks to be processed by Grbl when its ready. Most streaming
// interfaces will character count and track each block send to each block response. So,
// increase the receive buffer if a deeper receive buffer is needed for streaming and avaiable
// memory allows. The send buffer primarily handles messages in Grbl. Only increase if large
// messages are sent and Grbl begins to stall, waiting to send the rest of the message.
// NOTE: Buffer size values must be greater than zero and less than 256.
// #define RX_BUFFER_SIZE 128 // Uncomment to override defaults in serial.h
// #define TX_BUFFER_SIZE 64

// Toggles XON/XOFF software flow control for serial communications. Not officially supported
// due to problems involving the Atmega8U2 USB-to-serial chips on current Arduinos. The firmware
// on these chips do not support XON/XOFF flow control characters and the intermediate buffer
// in the chips cause latency and overflow problems with standard terminal programs. However,
// using specifically-programmed UI's to manage this latency problem has been confirmed to work.
// As well as, older FTDI FT232RL-based Arduinos(Duemilanove) are known to work with standard
// terminal programs since their firmware correctly manage these XON/XOFF characters. In any
// case, please report any successes to grbl administrators!
// #define ENABLE_XONXOFF // Default disabled. Uncomment to enable.

// A simple software debouncing feature for hard limit switches. When enabled, the interrupt
// monitoring the hard limit switch pins will enable the Arduino's watchdog timer to re-check

// the limit pin state after a delay of about 32msec. This can help with CNC machines with
// problematic false triggering of their hard limit switches, but it WILL NOT fix issues with
// electrical interference on the signal cables from external sources. It's recommended to first
// use shielded signal cables with their shielding connected to ground (old USB/computer cables
// work well and are cheap to find) and wire in a low-pass circuit into each limit pin.
// #define ENABLE_SOFTWARE_DEBOUNCE // Default disabled. Uncomment to enable.

// Force Grbl to check the state of the hard limit switches when the processor detects a pin
// change inside the hard limit ISR routine. By default, Grbl will trigger the hard limits
// alarm upon any pin change, since bouncing switches can cause a state check like this to
// misread the pin. When hard limits are triggered, they should be 100% reliable, which is the
// reason that this option is disabled by default. Only if your system/electronics can guarantee
// that the switches don't bounce, we recommend enabling this option. This will help prevent
// triggering a hard limit when the machine disengages from the switch.
// NOTE: This option has no effect if SOFTWARE_DEBOUNCE is enabled.
// #define HARD_LIMIT_FORCE_STATE_CHECK // Default disabled. Uncomment to enable.

// ---
// COMPILE-TIME ERROR CHECKING OF DEFINE VALUES:

#ifndef HOMING_CYCLE_0
#error "Required HOMING_CYCLE_0 not defined."

#endif

#if defined(USE_SPINDLE_DIR_AS_ENABLE_PIN) && !defined(VARIABLE_SPINDLE)
#error "USE_SPINDLE_DIR_AS_ENABLE_PIN may only be used with VARIABLE_SPINDLE

enabled"
#endif

#if defined(USE_SPINDLE_DIR_AS_ENABLE_PIN) && !defined(CPU_MAP_ATMEGA328P)
#error "USE_SPINDLE_DIR_AS_ENABLE_PIN may only be used with a 328p processor"

#endif

// ---

#endif

Pemrograman C.2 Coolant Control

/*
coolant_control.h - spindle control methods
Part of Grbl

Copyright (c) 2012-2015 Sungeun K. Jeon

Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef coolant_control_h
#define coolant_control_h

void coolant_init();
void coolant_stop();
void coolant_set_state(uint8_t mode);
void coolant_run(uint8_t mode);

#endif

Pemrograman C.3 CPUMap

/*
cpu_map.h - CPU and pin mapping configuration file
Part of Grbl

Copyright (c) 2012-2015 Sungeun K. Jeon

Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.

*/

/* The cpu_map.h files serve as a central pin mapping selection file for different processor
types, i.e. AVR 328p or AVR Mega 2560. Each processor has its own pin mapping file.
(i.e. cpu_map_atmega328p.h) Grbl officially supports the Arduino Uno, but the
other supplied pin mappings are supplied by users, so your results may vary. */

// NOTE: With new processors, only add the define name and filename to use.

#ifndef cpu_map_h
#define cpu_map_h

#ifdef CPU_MAP_ATMEGA328P // (Arduino Uno) Officially supported by Grbl.
#include "cpu_map/cpu_map_atmega328p.h"

#endif

#ifdef CPU_MAP_ATMEGA2560 // (Arduino Mega 2560) Working @EliteEng
#include "cpu_map/cpu_map_atmega2560.h"

#endif

/*
#ifdef CPU_MAP_CUSTOM_PROC
// For a custom pin map or different processor, copy and edit one of the available cpu
// map files and modify it to your needs. Make sure the defined name is also changed in
// the config.h file.

#endif
*/
#endif

Pemrograman C.4 Defaults

/*
defaults.h - defaults settings configuration file
Part of Grbl

Copyright (c) 2012-2015 Sungeun K. Jeon

Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.

*/

/* The defaults.h file serves as a central default settings selector for different machine
types, from DIY CNC mills to CNC conversions of off-the-shelf machines. The settings
files listed here are supplied by users, so your results may vary. However, this should
give you a good starting point as you get to know your machine and tweak the settings for
your nefarious needs.
Ensure one and only one of these DEFAULTS_XXX values is defined in config.h */

#ifndef defaults_h

// Only define the DEFAULT_XXX with where to find the corresponding default_XXX.h file.
// Don't #define defaults_h here, let the selected file do it. Prevents including more than one.

#ifdef DEFAULTS_GENERIC
// Grbl generic default settings. Should work across different machines.
#include "defaults/defaults_generic.h"

#endif

#ifdef DEFAULTS_SHERLINE_5400
// Description: Sherline 5400 mill with three NEMA 23 Keling KL23H256-21-8B 185 oz-in

stepper motors,
// driven by three Pololu A4988 stepper drivers with a 30V, 6A power supply at 1.5A per winding.
#include "defaults/defaults_sherline.h"

#endif

#ifdef DEFAULTS_SHAPEOKO
// Description: Shapeoko CNC mill with three NEMA 17 stepper motors, driven by Synthetos
// grblShield with a 24V, 4.2A power supply.
#include "defaults/defaults_shapeoko.h"

#endif

#ifdef DEFAULTS_SHAPEOKO_2
// Description: Shapeoko CNC mill with three NEMA 17 stepper motors, driven by Synthetos
// grblShield at 28V.

#include "defaults/defaults_shapeoko2.h"
#endif

#ifdef DEFAULTS_SHAPEOKO_3
// Description: Shapeoko CNC mill with three NEMA 23 stepper motors, driven by CarbideMotion
#include "defaults/defaults_shapeoko3.h"

#endif

#ifdef DEFAULTS_X_CARVE_500MM
// Description: X-Carve 3D Carver CNC mill with three 200 step/rev motors driven by Synthetos
// grblShield at 24V.
#include "defaults/defaults_x_carve_500mm.h"

#endif

#ifdef DEFAULTS_X_CARVE_1000MM
// Description: X-Carve 3D Carver CNC mill with three 200 step/rev motors driven by Synthetos
// grblShield at 24V.
#include "defaults/defaults_x_carve_1000mm.h"

#endif

#ifdef DEFAULTS_ZEN_TOOLWORKS_7x7
// Description: Zen Toolworks 7x7 mill with three Shinano SST43D2121 65oz-in NEMA 17 stepper

motors.
// Leadscrew is different from some ZTW kits, where most are 1.25mm/rev rather than 8.0mm/rev

here.
// Driven by 30V, 6A power supply and TI DRV8811 stepper motor drivers.
#include "defaults/defaults_zen_toolworks_7x7.h"

#endif

#ifdef DEFAULTS_OXCNC
// Grbl settings for OpenBuilds OX CNC Machine
// http://www.openbuilds.com/builds/openbuilds-ox-cnc-machine.341/
#include "defaults/defaults_oxcnc.h"

#endif

#ifdef DEFAULTS_SIMULATOR
// Settings only for Grbl Simulator (www.github.com/grbl/grbl-sim)
#include "defaults/defaults_simulator.h"

#endif

#endif

Pemrograman C.5 Eeprom

/*
eeprom.h - EEPROM methods
Part of Grbl

Copyright (c) 2009-2011 Simen Svale Skogsrud

Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef eeprom_h
#define eeprom_h

unsigned char eeprom_get_char(unsigned int addr);
void eeprom_put_char(unsigned int addr, unsigned char new_value);
void memcpy_to_eeprom_with_checksum(unsigned int destination, char *source, unsigned int size);
int memcpy_from_eeprom_with_checksum(char *destination, unsigned int source, unsigned int size);

#endif

Pemrograman C.6 G-code

/*
gcode.h - rs274/ngc parser.
Part of Grbl

Copyright (c) 2011-2015 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud

Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef gcode_h
#define gcode_h

// Define modal group internal numbers for checking multiple command violations and tracking the
// type of command that is called in the block. A modal group is a group of g-code commands that are
// mutually exclusive, or cannot exist on the same line, because they each toggle a state or execute
// a unique motion. These are defined in the NIST RS274-NGC v3 g-code standard, available online,
// and are similar/identical to other g-code interpreters by manufacturers (Haas,Fanuc,Mazak,etc).
// NOTE: Modal group define values must be sequential and starting from zero.
#define MODAL_GROUP_G0 0 // [G4,G10,G28,G28.1,G30,G30.1,G53,G92,G92.1] Non-modal
#define MODAL_GROUP_G1 1 // [G0,G1,G2,G3,G38.2,G38.3,G38.4,G38.5,G80] Motion
#define MODAL_GROUP_G2 2 // [G17,G18,G19] Plane selection
#define MODAL_GROUP_G3 3 // [G90,G91] Distance mode
#define MODAL_GROUP_G4 4 // [G91.1] Arc IJK distance mode
#define MODAL_GROUP_G5 5 // [G93,G94] Feed rate mode
#define MODAL_GROUP_G6 6 // [G20,G21] Units
#define MODAL_GROUP_G7 7 // [G40] Cutter radius compensation mode. G41/42 NOT
SUPPORTED.
#define MODAL_GROUP_G8 8 // [G43.1,G49] Tool length offset
#define MODAL_GROUP_G12 9 // [G54,G55,G56,G57,G58,G59] Coordinate system selection

#define MODAL_GROUP_G13 10 // [G61] Control mode

#define MODAL_GROUP_M4 11 // [M0,M1,M2,M30] Stopping
#define MODAL_GROUP_M7 12 // [M3,M4,M5] Spindle turning
#define MODAL_GROUP_M8 13 // [M7,M8,M9] Coolant control

// #define OTHER_INPUT_F 14
// #define OTHER_INPUT_S 15
// #define OTHER_INPUT_T 16

// Define command actions for within execution-type modal groups (motion, stopping, non-modal).
Used
// internally by the parser to know which command to execute.

// Modal Group G0: Non-modal actions
#define NON_MODAL_NO_ACTION 0 // (Default: Must be zero)
#define NON_MODAL_DWELL 1 // G4
#define NON_MODAL_SET_COORDINATE_DATA 2 // G10
#define NON_MODAL_GO_HOME_0 3 // G28
#define NON_MODAL_SET_HOME_0 4 // G28.1
#define NON_MODAL_GO_HOME_1 5 // G30
#define NON_MODAL_SET_HOME_1 6 // G30.1
#define NON_MODAL_ABSOLUTE_OVERRIDE 7 // G53
#define NON_MODAL_SET_COORDINATE_OFFSET 8 // G92
#define NON_MODAL_RESET_COORDINATE_OFFSET 9 //G92.1

// Modal Group G1: Motion modes
#define MOTION_MODE_SEEK 0 // G0 (Default: Must be zero)
#define MOTION_MODE_LINEAR 1 // G1
#define MOTION_MODE_CW_ARC 2 // G2
#define MOTION_MODE_CCW_ARC 3 // G3
#define MOTION_MODE_PROBE_TOWARD 4 // G38.2 NOTE: G38.2, G38.3, G38.4, G38.5 must
be sequential. See report_gcode_modes().
#define MOTION_MODE_PROBE_TOWARD_NO_ERROR 5 // G38.3
#define MOTION_MODE_PROBE_AWAY 6 // G38.4
#define MOTION_MODE_PROBE_AWAY_NO_ERROR 7 // G38.5
#define MOTION_MODE_NONE 8 // G80

// Modal Group G2: Plane select
#define PLANE_SELECT_XY 0 // G17 (Default: Must be zero)
#define PLANE_SELECT_ZX 1 // G18
#define PLANE_SELECT_YZ 2 // G19

// Modal Group G3: Distance mode
#define DISTANCE_MODE_ABSOLUTE 0 // G90 (Default: Must be zero)
#define DISTANCE_MODE_INCREMENTAL 1 // G91

// Modal Group G4: Arc IJK distance mode
#define DISTANCE_ARC_MODE_INCREMENTAL 0 // G91.1 (Default: Must be zero)

// Modal Group M4: Program flow
#define PROGRAM_FLOW_RUNNING 0 // (Default: Must be zero)
#define PROGRAM_FLOW_PAUSED 1 // M0, M1
#define PROGRAM_FLOW_COMPLETED 2 // M2, M30

// Modal Group G5: Feed rate mode
#define FEED_RATE_MODE_UNITS_PER_MIN 0 // G94 (Default: Must be zero)
#define FEED_RATE_MODE_INVERSE_TIME 1 // G93

// Modal Group G6: Units mode

#define UNITS_MODE_MM 0 // G21 (Default: Must be zero)
#define UNITS_MODE_INCHES 1 // G20

// Modal Group G7: Cutter radius compensation mode
#define CUTTER_COMP_DISABLE 0 // G40 (Default: Must be zero)

// Modal Group G13: Control mode
#define CONTROL_MODE_EXACT_PATH 0 // G61 (Default: Must be zero)

// Modal Group M7: Spindle control
#define SPINDLE_DISABLE 0 // M5 (Default: Must be zero)
#define SPINDLE_ENABLE_CW 1 // M3
#define SPINDLE_ENABLE_CCW 2 // M4

// Modal Group M8: Coolant control
#define COOLANT_DISABLE 0 // M9 (Default: Must be zero)
#define COOLANT_MIST_ENABLE 1 // M7
#define COOLANT_FLOOD_ENABLE 2 // M8

// Modal Group G8: Tool length offset
#define TOOL_LENGTH_OFFSET_CANCEL 0 // G49 (Default: Must be zero)
#define TOOL_LENGTH_OFFSET_ENABLE_DYNAMIC 1 // G43.1

// Modal Group G12: Active work coordinate system
// N/A: Stores coordinate system value (54-59) to change to.

// Define parameter word mapping.
#define WORD_F 0
#define WORD_I 1
#define WORD_J 2
#define WORD_K 3
#define WORD_L 4
#define WORD_N 5
#define WORD_P 6
#define WORD_R 7
#define WORD_S 8
#define WORD_T 9
#define WORD_X 10
#define WORD_Y 11
#define WORD_Z 12

// NOTE: When this struct is zeroed, the above defines set the defaults for the system.
typedef struct {
uint8_t motion; // {G0,G1,G2,G3,G38.2,G80}
uint8_t feed_rate; // {G93,G94}
uint8_t units; // {G20,G21}
uint8_t distance; // {G90,G91}
// uint8_t distance_arc; // {G91.1} NOTE: Don't track. Only default supported.
uint8_t plane_select; // {G17,G18,G19}
// uint8_t cutter_comp; // {G40} NOTE: Don't track. Only default supported.
uint8_t tool_length; // {G43.1,G49}
uint8_t coord_select; // {G54,G55,G56,G57,G58,G59}
// uint8_t control; // {G61} NOTE: Don't track. Only default supported.
uint8_t program_flow; // {M0,M1,M2,M30}
uint8_t coolant; // {M7,M8,M9}
uint8_t spindle; // {M3,M4,M5}

} gc_modal_t;

typedef struct {
float f; // Feed
float ijk[3]; // I,J,K Axis arc offsets
uint8_t l; // G10 or canned cycles parameters
int32_t n; // Line number
float p; // G10 or dwell parameters
// float q; // G82 peck drilling
float r; // Arc radius
float s; // Spindle speed
uint8_t t; // Tool selection
float xyz[3]; // X,Y,Z Translational axes

} gc_values_t;

typedef struct {
gc_modal_t modal;

float spindle_speed; // RPM
float feed_rate; // Millimeters/min
uint8_t tool; // Tracks tool number. NOT USED.
int32_t line_number; // Last line number sent

float position[N_AXIS]; // Where the interpreter considers the tool to be at this point in the
code

float coord_system[N_AXIS]; // Current work coordinate system (G54+). Stores offset from
absolute machine

// position in mm. Loaded from EEPROM when called.
float coord_offset[N_AXIS]; // Retains the G92 coordinate offset (work coordinates) relative to

// machine zero in mm. Non-persistent. Cleared upon reset and
boot.
float tool_length_offset; // Tracks tool length offset value when enabled.

} parser_state_t;
extern parser_state_t gc_state;

typedef struct {
// uint16_t command_words; // NOTE: If this bitflag variable fills, G and M words can be
separated.
// uint16_t value_words;

uint8_t non_modal_command;
gc_modal_t modal;
gc_values_t values;

} parser_block_t;
extern parser_block_t gc_block;

// Initialize the parser
void gc_init();

// Execute one block of rs275/ngc/g-code
uint8_t gc_execute_line(char *line);

// Set g-code parser position. Input in steps.
void gc_sync_position();

#endif

Pemrograman C.7 Grbl

/*
grbl.h - main Grbl include file
Part of Grbl

Copyright (c) 2015 Sungeun K. Jeon

Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef grbl_h
#define grbl_h

// Grbl versioning system
#define GRBL_VERSION "0.9j"
#define GRBL_VERSION_BUILD "20160726"

// Define standard libraries used by Grbl.
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <avr/interrupt.h>
#include <avr/wdt.h>
#include <util/delay.h>
#include <math.h>
#include <inttypes.h>
#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>

// Define the Grbl system include files. NOTE: Do not alter organization.
#include "config.h"
#include "nuts_bolts.h"
#include "settings.h"
#include "system.h"
#include "defaults.h"
#include "cpu_map.h"
#include "coolant_control.h"
#include "eeprom.h"
#include "gcode.h"
#include "limits.h"
#include "motion_control.h"
#include "planner.h"
#include "print.h"
#include "probe.h"
#include "protocol.h"
#include "report.h"
#include "serial.h"

#include "spindle_control.h"
#include "stepper.h"

#endif

Pemrograman C.8 Limits

/*
limits.h - code pertaining to limit-switches and performing the homing cycle
Part of Grbl

Copyright (c) 2012-2015 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud

Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef limits_h
#define limits_h

// Initialize the limits module
void limits_init();

// Disables hard limits.
void limits_disable();

// Returns limit state as a bit-wise uint8 variable.
uint8_t limits_get_state();

// Perform one portion of the homing cycle based on the input settings.
void limits_go_home(uint8_t cycle_mask);

// Check for soft limit violations
void limits_soft_check(float *target);

#endif

Pemrograman C.9Motion Control

/*
motion_control.h - high level interface for issuing motion commands
Part of Grbl

Copyright (c) 2011-2015 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud

Grbl is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef motion_control_h
#define motion_control_h

#define HOMING_CYCLE_LINE_NUMBER -1

// Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
// unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in
// (1 minute)/feed_rate time.
#ifdef USE_LINE_NUMBERS
void mc_line(float *target, float feed_rate, uint8_t invert_feed_rate, int32_t line_number);
#else
void mc_line(float *target, float feed_rate, uint8_t invert_feed_rate);
#endif

// Execute an arc in offset mode format. position == current xyz, target == target xyz,
// offset == offset from current xyz, axis_XXX defines circle plane in tool space, axis_linear is
// the direction of helical travel, radius == circle radius, is_clockwise_arc boolean. Used
// for vector transformation direction.
#ifdef USE_LINE_NUMBERS
void mc_arc(float *position, float *target, float *offset, float radius, float feed_rate,
uint8_t invert_feed_rate, uint8_t axis_0, uint8_t axis_1, uint8_t axis_linear, uint8_t

is_clockwise_arc, int32_t line_number);
#else
void mc_arc(float *position, float *target, float *offset, float radius, float feed_rate,
uint8_t invert_feed_rate, uint8_t axis_0, uint8_t axis_1, uint8_t axis_linear, uint8_t

is_clockwise_arc);
#endif

// Dwell for a specific number of seconds
void mc_dwell(float seconds);

// Perform homing cycle to locate machine zero. Requires limit switches.
void mc_homing_cycle();

// Perform tool length probe cycle. Requires probe switch.
#ifdef USE_LINE_NUMBERS
void mc_probe_cycle(float *target, float feed_rate, uint8_t invert_feed_rate, uint8_t is_probe_away,
uint8_t is_no_error, int32_t line_number);

#else
void mc_probe_cycle(float *target, float feed_rate, uint8_t invert_feed_rate, uint8_t is_probe_away,
uint8_t is_no_error);

#endif

// Performs system reset. If in motion state, kills all motion and sets system alarm.
void mc_reset();

#endif

Pemrograman C.10 Nuts Bolts

/*
nuts_bolts.h - Header file for shared definitions, variables, and functions
Part of Grbl

Copyright (c) 2011-2015 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud

Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef nuts_bolts_h
#define nuts_bolts_h

#define false 0
#define true 1

// Axis array index values. Must start with 0 and be continuous.
#define N_AXIS 3 // Number of axes
#define X_AXIS 0 // Axis indexing value.
#define Y_AXIS 1
#define Z_AXIS 2
// #define A_AXIS 3

// CoreXY motor assignments. DO NOT ALTER.
// NOTE: If the A and B motor axis bindings are changed, this effects the CoreXY equations.
#ifdef COREXY
#define A_MOTOR X_AXIS // Must be X_AXIS
#define B_MOTOR Y_AXIS // Must be Y_AXIS
#endif

// Conversions
#define MM_PER_INCH (25.40)
#define INCH_PER_MM (0.0393701)
#define TICKS_PER_MICROSECOND (F_CPU/1000000)

// Useful macros
#define clear_vector(a) memset(a, 0, sizeof(a))
#define clear_vector_float(a) memset(a, 0.0, sizeof(float)*N_AXIS)
// #define clear_vector_long(a) memset(a, 0.0, sizeof(long)*N_AXIS)
#define max(a,b) (((a) > (b)) ? (a) : (b))
#define min(a,b) (((a) < (b)) ? (a) : (b))

// Bit field and masking macros
#define bit(n) (1 << n)

#define bit_true_atomic(x,mask) {uint8_t sreg = SREG; cli(); (x) |= (mask); SREG = sreg; }
#define bit_false_atomic(x,mask) {uint8_t sreg = SREG; cli(); (x) &= ~(mask); SREG = sreg; }
#define bit_toggle_atomic(x,mask) {uint8_t sreg = SREG; cli(); (x) ^= (mask); SREG = sreg; }
#define bit_true(x,mask) (x) |= (mask)
#define bit_false(x,mask) (x) &= ~(mask)
#define bit_istrue(x,mask) ((x & mask) != 0)
#define bit_isfalse(x,mask) ((x & mask) == 0)

// Read a floating point value from a string. Line points to the input buffer, char_counter
// is the indexer pointing to the current character of the line, while float_ptr is
// a pointer to the result variable. Returns true when it succeeds
uint8_t read_float(char *line, uint8_t *char_counter, float *float_ptr);

// Delays variable-defined milliseconds. Compiler compatibility fix for _delay_ms().
void delay_ms(uint16_t ms);

// Delays variable-defined microseconds. Compiler compatibility fix for _delay_us().
void delay_us(uint32_t us);

// Computes hypotenuse, avoiding avr-gcc's bloated version and the extra error checking.
float hypot_f(float x, float y);

#endif

Pemrograman C.11 Planner

/*
planner.h - buffers movement commands and manages the acceleration profile plan
Part of Grbl

Copyright (c) 2011-2015 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud

Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef planner_h
#define planner_h

// The number of linear motions that can be in the plan at any give time
#ifndef BLOCK_BUFFER_SIZE
#ifdef USE_LINE_NUMBERS
#define BLOCK_BUFFER_SIZE 16

#else
#define BLOCK_BUFFER_SIZE 18

#endif
#endif

// This struct stores a linear movement of a g-code block motion with its critical "nominal" values
// are as specified in the source g-code.
typedef struct {
// Fields used by the bresenham algorithm for tracing the line
// NOTE: Used by stepper algorithm to execute the block correctly. Do not alter these values.
uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in

config.h)
uint32_t steps[N_AXIS]; // Step count along each axis
uint32_t step_event_count; // The maximum step axis count and number of steps required to

complete this block.

// Fields used by the motion planner to manage acceleration
float entry_speed_sqr; // The current planned entry speed at block junction in (mm/min)^2
float max_entry_speed_sqr; // Maximum allowable entry speed based on the minimum of

junction limit and
// neighboring nominal speeds with overrides in

(mm/min)^2
float max_junction_speed_sqr; // Junction entry speed limit based on direction vectors in

(mm/min)^2
float nominal_speed_sqr; // Axis-limit adjusted nominal speed for this block in (mm/min)^2
float acceleration; // Axis-limit adjusted line acceleration in (mm/min^2)
float millimeters; // The remaining distance for this block to be executed in (mm)
// uint8_t max_override; // Maximum override value based on axis speed limits

#ifdef USE_LINE_NUMBERS
int32_t line_number;

#endif
} plan_block_t;

// Initialize and reset the motion plan subsystem
void plan_reset();

// Add a new linear movement to the buffer. target[N_AXIS] is the signed, absolute target position
// in millimeters. Feed rate specifies the speed of the motion. If feed rate is inverted, the feed
// rate is taken to mean "frequency" and would complete the operation in 1/feed_rate minutes.
#ifdef USE_LINE_NUMBERS
void plan_buffer_line(float *target, float feed_rate, uint8_t invert_feed_rate, int32_t line_number);

#else
void plan_buffer_line(float *target, float feed_rate, uint8_t invert_feed_rate);

#endif

// Called when the current block is no longer needed. Discards the block and makes the memory
// availible for new blocks.
void plan_discard_current_block();

// Gets the current block. Returns NULL if buffer empty
plan_block_t *plan_get_current_block();

// Called periodically by step segment buffer. Mostly used internally by planner.
uint8_t plan_next_block_index(uint8_t block_index);

// Called by step segment buffer when computing executing block velocity profile.
float plan_get_exec_block_exit_speed();

// Reset the planner position vector (in steps)
void plan_sync_position();

// Reinitialize plan with a partially completed block

void plan_cycle_reinitialize();

// Returns the number of active blocks are in the planner buffer.
uint8_t plan_get_block_buffer_count();

// Returns the status of the block ring buffer. True, if buffer is full.
uint8_t plan_check_full_buffer();

#endif

Pemrograman C.12 Print

/*
print.h - Functions for formatting output strings
Part of Grbl

Copyright (c) 2011-2015 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud

Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef print_h
#define print_h

void printString(const char *s);

void printPgmString(const char *s);

void printInteger(long n);

void print_uint32_base10(uint32_t n);

// Prints uint8 variable with base and number of desired digits.
void print_unsigned_int8(uint8_t n, uint8_t base, uint8_t digits);

// Prints an uint8 variable in base 2.
void print_uint8_base2(uint8_t n);

// Prints an uint8 variable in base 10.
void print_uint8_base10(uint8_t n);

void printFloat(float n, uint8_t decimal_places);

// Floating value printing handlers for special variables types used in Grbl.
// - CoordValue: Handles all position or coordinate values in inches or mm reporting.
// - RateValue: Handles feed rate and current velocity in inches or mm reporting.

// - SettingValue: Handles all floating point settings values (always in mm.)
void printFloat_CoordValue(float n);

void printFloat_RateValue(float n);

void printFloat_SettingValue(float n);

// Debug tool to print free memory in bytes at the called point. Not used otherwise.
void printFreeMemory();

#endif

Pemrograman C.13 Probe

/*
probe.h - code pertaining to probing methods
Part of Grbl

Copyright (c) 2014-2015 Sungeun K. Jeon

Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Grbl is distributed in the hope that it will be useful,
but WITHOUT ANYWARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef probe_h
#define probe_h

// Values that define the probing state machine.
#define PROBE_OFF 0 // Probing disabled or not in use. (Must be zero.)
#define PROBE_ACTIVE 1 // Actively watching the input pin.

// Probe pin initialization routine.
void probe_init();

// Called by probe_init() and the mc_probe() routines. Sets up the probe pin invert mask to
// appropriately set the pin logic according to setting for normal-high/normal-low operation
// and the probing cycle modes for toward-workpiece/away-from-workpiece.
void probe_configure_invert_mask(uint8_t is_probe_away);

// Returns probe pin state. Triggered = true. Called by gcode parser and probe state monitor.
uint8_t probe_get_state();

// Monitors probe pin state and records the system position when detected. Called by the
// stepper ISR per ISR tick.
void probe_state_monitor();

#endif

Pemrograman C.14 Protocol

/*
protocol.h - controls Grbl execution protocol and procedures
Part of Grbl

Copyright (c) 2011-2015 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud

Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef protocol_h
#define protocol_h

// Line buffer size from the serial input stream to be executed.
// NOTE: Not a problem except for extreme cases, but the line buffer size can be too small
// and g-code blocks can get truncated. Officially, the g-code standards support up to 256
// characters. In future versions, this will be increased, when we know how much extra
// memory space we can invest into here or we re-write the g-code parser not to have this
// buffer.
#ifndef LINE_BUFFER_SIZE
#define LINE_BUFFER_SIZE 80

#endif

// Starts Grbl main loop. It handles all incoming characters from the serial port and executes
// them as they complete. It is also responsible for finishing the initialization procedures.
void protocol_main_loop();

// Checks and executes a realtime command at various stop points in main program
void protocol_execute_realtime();

// Notify the stepper subsystem to start executing the g-code program in buffer.
// void protocol_cycle_start();

// Reinitializes the buffer after a feed hold for a resume.
// void protocol_cycle_reinitialize();

// Initiates a feed hold of the running program
// void protocol_feed_hold();

// Executes the auto cycle feature, if enabled.
void protocol_auto_cycle_start();

// Block until all buffered steps are executed
void protocol_buffer_synchronize();

#endif

Pemrograman C.15 Report

/*
report.h - reporting and messaging methods

Part of Grbl

Copyright (c) 2012-2015 Sungeun K. Jeon

Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.

*/
#ifndef report_h
#define report_h

// Define Grbl status codes.
#define STATUS_OK 0
#define STATUS_EXPECTED_COMMAND_LETTER 1
#define STATUS_BAD_NUMBER_FORMAT 2
#define STATUS_INVALID_STATEMENT 3
#define STATUS_NEGATIVE_VALUE 4
#define STATUS_SETTING_DISABLED 5
#define STATUS_SETTING_STEP_PULSE_MIN 6
#define STATUS_SETTING_READ_FAIL 7
#define STATUS_IDLE_ERROR 8
#define STATUS_ALARM_LOCK 9
#define STATUS_SOFT_LIMIT_ERROR 10
#define STATUS_OVERFLOW 11
#define STATUS_MAX_STEP_RATE_EXCEEDED 12

#define STATUS_GCODE_UNSUPPORTED_COMMAND 20
#define STATUS_GCODE_MODAL_GROUP_VIOLATION 21
#define STATUS_GCODE_UNDEFINED_FEED_RATE 22
#define STATUS_GCODE_COMMAND_VALUE_NOT_INTEGER 23
#define STATUS_GCODE_AXIS_COMMAND_CONFLICT 24
#define STATUS_GCODE_WORD_REPEATED 25
#define STATUS_GCODE_NO_AXIS_WORDS 26
#define STATUS_GCODE_INVALID_LINE_NUMBER 27
#define STATUS_GCODE_VALUE_WORD_MISSING 28
#define STATUS_GCODE_UNSUPPORTED_COORD_SYS 29
#define STATUS_GCODE_G53_INVALID_MOTION_MODE 30
#define STATUS_GCODE_AXIS_WORDS_EXIST 31
#define STATUS_GCODE_NO_AXIS_WORDS_IN_PLANE 32
#define STATUS_GCODE_INVALID_TARGET 33
#define STATUS_GCODE_ARC_RADIUS_ERROR 34
#define STATUS_GCODE_NO_OFFSETS_IN_PLANE 35
#define STATUS_GCODE_UNUSED_WORDS 36
#define STATUS_GCODE_G43_DYNAMIC_AXIS_ERROR 37

// Define Grbl alarm codes.
#define ALARM_HARD_LIMIT_ERROR 1
#define ALARM_SOFT_LIMIT_ERROR 2
#define ALARM_ABORT_CYCLE 3
#define ALARM_PROBE_FAIL 4
#define ALARM_HOMING_FAIL 5

// Define Grbl feedback message codes.
#define MESSAGE_CRITICAL_EVENT 1
#define MESSAGE_ALARM_LOCK 2
#define MESSAGE_ALARM_UNLOCK 3
#define MESSAGE_ENABLED 4
#define MESSAGE_DISABLED 5
#define MESSAGE_SAFETY_DOOR_AJAR 6
#define MESSAGE_PROGRAM_END 7
#define MESSAGE_RESTORE_DEFAULTS 8

// Prints system status messages.
void report_status_message(uint8_t status_code);

// Prints system alarm messages.
void report_alarm_message(int8_t alarm_code);

// Prints miscellaneous feedback messages.
void report_feedback_message(uint8_t message_code);

// Prints welcome message
void report_init_message();

// Prints Grbl help and current global settings
void report_grbl_help();

// Prints Grbl global settings
void report_grbl_settings();

// Prints an echo of the pre-parsed line received right before execution.
void report_echo_line_received(char *line);

// Prints realtime status report
void report_realtime_status();

// Prints recorded probe position
void report_probe_parameters();

// Prints Grbl NGC parameters (coordinate offsets, probe)
void report_ngc_parameters();

// Prints current g-code parser mode state
void report_gcode_modes();

// Prints startup line
void report_startup_line(uint8_t n, char *line);

// Prints build info and user info
void report_build_info(char *line);

#endif

Pemrograman C.16 Serial

/*
serial.c - Low level functions for sending and recieving bytes via the serial port
Part of Grbl

Copyright (c) 2011-2015 Sungeun K. Jeon

Copyright (c) 2009-2011 Simen Svale Skogsrud

Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef serial_h
#define serial_h

#ifndef RX_BUFFER_SIZE
#define RX_BUFFER_SIZE 128

#endif
#ifndef TX_BUFFER_SIZE
#define TX_BUFFER_SIZE 64

#endif

#define SERIAL_NO_DATA 0xff

#ifdef ENABLE_XONXOFF
#define RX_BUFFER_FULL 96 // XOFF high watermark
#define RX_BUFFER_LOW 64 // XON low watermark
#define SEND_XOFF 1
#define SEND_XON 2
#define XOFF_SENT 3
#define XON_SENT 4
#define XOFF_CHAR 0x13
#define XON_CHAR 0x11

#endif

void serial_init();

// Writes one byte to the TX serial buffer. Called by main program.
void serial_write(uint8_t data);

// Fetches the first byte in the serial read buffer. Called by main program.
uint8_t serial_read();

// Reset and empty data in read buffer. Used by e-stop and reset.
void serial_reset_read_buffer();

// Returns the number of bytes used in the RX serial buffer.
uint8_t serial_get_rx_buffer_count();

// Returns the number of bytes used in the TX serial buffer.
// NOTE: Not used except for debugging and ensuring no TX bottlenecks.
uint8_t serial_get_tx_buffer_count();

#endif

Pemrograman C.17 Settings

/*
settings.h - eeprom configuration handling
Part of Grbl

Copyright (c) 2011-2015 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud

Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef settings_h
#define settings_h

#include "grbl.h"

// Version of the EEPROM data. Will be used to migrate existing data from older versions of Grbl
// when firmware is upgraded. Always stored in byte 0 of eeprom
#define SETTINGS_VERSION 9 // NOTE: Check settings_reset() when moving to next version.

// Define bit flag masks for the boolean settings in settings.flag.
#define BITFLAG_REPORT_INCHES bit(0)
// #define BITFLAG_AUTO_START bit(1) // Obsolete. Don't alter to keep back
compatibility.
#define BITFLAG_INVERT_ST_ENABLE bit(2)
#define BITFLAG_HARD_LIMIT_ENABLE bit(3)
#define BITFLAG_HOMING_ENABLE bit(4)
#define BITFLAG_SOFT_LIMIT_ENABLE bit(5)
#define BITFLAG_INVERT_LIMIT_PINS bit(6)
#define BITFLAG_INVERT_PROBE_PIN bit(7)

// Define status reporting boolean enable bit flags in settings.status_report_mask
#define BITFLAG_RT_STATUS_MACHINE_POSITION bit(0)
#define BITFLAG_RT_STATUS_WORK_POSITION bit(1)
#define BITFLAG_RT_STATUS_PLANNER_BUFFER bit(2)
#define BITFLAG_RT_STATUS_SERIAL_RX bit(3)
#define BITFLAG_RT_STATUS_LIMIT_PINS bit(4)

// Define settings restore bitflags.
#define SETTINGS_RESTORE_ALL 0xFF // All bitflags
#define SETTINGS_RESTORE_DEFAULTS bit(0)
#define SETTINGS_RESTORE_PARAMETERS bit(1)
#define SETTINGS_RESTORE_STARTUP_LINES bit(2)
#define SETTINGS_RESTORE_BUILD_INFO bit(3)

// Define EEPROM memory address location values for Grbl settings and parameters
// NOTE: The Atmega328p has 1KB EEPROM. The upper half is reserved for parameters and

// the startup script. The lower half contains the global settings and space for future
// developments.
#define EEPROM_ADDR_GLOBAL 1U
#define EEPROM_ADDR_PARAMETERS 512U
#define EEPROM_ADDR_STARTUP_BLOCK 768U
#define EEPROM_ADDR_BUILD_INFO 942U

// Define EEPROM address indexing for coordinate parameters
#define N_COORDINATE_SYSTEM 6 // Number of supported work coordinate systems (from
index 1)
#define SETTING_INDEX_NCOORD N_COORDINATE_SYSTEM+1 // Total number of system
stored (from index 0)
// NOTE: Work coordinate indices are (0=G54, 1=G55, ... , 6=G59)
#define SETTING_INDEX_G28 N_COORDINATE_SYSTEM // Home position 1
#define SETTING_INDEX_G30 N_COORDINATE_SYSTEM+1 // Home position 2
// #define SETTING_INDEX_G92 N_COORDINATE_SYSTEM+2 // Coordinate offset
(G92.2,G92.3 not supported)

// Define Grbl axis settings numbering scheme. Starts at START_VAL, every INCREMENT, over
N_SETTINGS.
#define AXIS_N_SETTINGS 4
#define AXIS_SETTINGS_START_VAL 100 // NOTE: Reserving settings values >= 100 for axis
settings. Up to 255.
#define AXIS_SETTINGS_INCREMENT 10 // Must be greater than the number of axis settings

// Global persistent settings (Stored from byte EEPROM_ADDR_GLOBAL onwards)
typedef struct {
// Axis settings
float steps_per_mm[N_AXIS];
float max_rate[N_AXIS];
float acceleration[N_AXIS];
float max_travel[N_AXIS];

// Remaining Grbl settings
uint8_t pulse_microseconds;
uint8_t step_invert_mask;
uint8_t dir_invert_mask;
uint8_t stepper_idle_lock_time; // If max value 255, steppers do not disable.
uint8_t status_report_mask; // Mask to indicate desired report data.
float junction_deviation;
float arc_tolerance;

uint8_t flags; // Contains default boolean settings

uint8_t homing_dir_mask;
float homing_feed_rate;
float homing_seek_rate;
uint16_t homing_debounce_delay;
float homing_pulloff;

} settings_t;
extern settings_t settings;

// Initialize the configuration subsystem (load settings from EEPROM)
void settings_init();

// Helper function to clear and restore EEPROM defaults
void settings_restore(uint8_t restore_flag);

// A helper method to set new settings from command line
uint8_t settings_store_global_setting(uint8_t parameter, float value);

// Stores the protocol line variable as a startup line in EEPROM
void settings_store_startup_line(uint8_t n, char *line);

// Reads an EEPROM startup line to the protocol line variable
uint8_t settings_read_startup_line(uint8_t n, char *line);

// Stores build info user-defined string
void settings_store_build_info(char *line);

// Reads build info user-defined string
uint8_t settings_read_build_info(char *line);

// Writes selected coordinate data to EEPROM
void settings_write_coord_data(uint8_t coord_select, float *coord_data);

// Reads selected coordinate data from EEPROM
uint8_t settings_read_coord_data(uint8_t coord_select, float *coord_data);

// Returns the step pin mask according to Grbl's internal axis numbering
uint8_t get_step_pin_mask(uint8_t i);

// Returns the direction pin mask according to Grbl's internal axis numbering
uint8_t get_direction_pin_mask(uint8_t i);

// Returns the limit pin mask according to Grbl's internal axis numbering
uint8_t get_limit_pin_mask(uint8_t i);

#endif

Pemrograman C. 18 Spindle Control

/*
spindle_control.h - spindle control methods
Part of Grbl

Copyright (c) 2012-2015 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud

Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef spindle_control_h
#define spindle_control_h

// Initializes spindle pins and hardware PWM, if enabled.

void spindle_init();

// Sets spindle direction and spindle rpm via PWM, if enabled.
void spindle_run(uint8_t direction, float rpm);

void spindle_set_state(uint8_t state, float rpm);

// Kills spindle.
void spindle_stop();

#endif

Pemrograman C.19 Stepper

/*
stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
Part of Grbl

Copyright (c) 2011-2015 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud

Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef stepper_h
#define stepper_h

#ifndef SEGMENT_BUFFER_SIZE
#define SEGMENT_BUFFER_SIZE 6

#endif

// Initialize and setup the stepper motor subsystem
void stepper_init();

// Enable steppers, but cycle does not start unless called by motion control or realtime command.
void st_wake_up();

// Immediately disables steppers
void st_go_idle();

// Generate the step and direction port invert masks.
void st_generate_step_dir_invert_masks();

// Reset the stepper subsystem variables
void st_reset();

// Reloads step segment buffer. Called continuously by realtime execution system.
void st_prep_buffer();

// Called by planner_recalculate() when the executing block is updated by the new plan.
void st_update_plan_block_parameters();

// Called by realtime status reporting if realtime rate reporting is enabled in config.h.
#ifdef REPORT_REALTIME_RATE
float st_get_realtime_rate();
#endif

#endif

Pemrograman C.20 System

/*
system.h - Header for system level commands and real-time processes
Part of Grbl

Copyright (c) 2014-2015 Sungeun K. Jeon

Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef system_h
#define system_h

#include "grbl.h"

// Define system executor bit map. Used internally by realtime protocol as realtime command flags,
// which notifies the main program to execute the specified realtime command asynchronously.
// NOTE: The system executor uses an unsigned 8-bit volatile variable (8 flag limit.) The default
// flags are always false, so the realtime protocol only needs to check for a non-zero value to
// know when there is a realtime command to execute.
#define EXEC_STATUS_REPORT bit(0) // bitmask 00000001
#define EXEC_CYCLE_START bit(1) // bitmask 00000010
#define EXEC_CYCLE_STOP bit(2) // bitmask 00000100
#define EXEC_FEED_HOLD bit(3) // bitmask 00001000
#define EXEC_RESET bit(4) // bitmask 00010000
#define EXEC_SAFETY_DOOR bit(5) // bitmask 00100000
#define EXEC_MOTION_CANCEL bit(6) // bitmask 01000000

// Alarm executor bit map.
// NOTE: EXEC_CRITICAL_EVENT is an optional flag that must be set with an alarm flag. When
enabled,
// this halts Grbl into an infinite loop until the user aknowledges the problem and issues a soft-
// reset command. For example, a hard limit event needs this type of halt and aknowledgement.
#define EXEC_CRITICAL_EVENT bit(0) // bitmask 00000001 (SPECIAL FLAG. See NOTE:)
#define EXEC_ALARM_HARD_LIMIT bit(1) // bitmask 00000010
#define EXEC_ALARM_SOFT_LIMIT bit(2) // bitmask 00000100

#define EXEC_ALARM_ABORT_CYCLE bit(3) // bitmask 00001000
#define EXEC_ALARM_PROBE_FAIL bit(4) // bitmask 00010000
#define EXEC_ALARM_HOMING_FAIL bit(5) // bitmask 00100000

// Define system state bit map. The state variable primarily tracks the individual functions
// of Grbl to manage each without overlapping. It is also used as a messaging flag for
// critical events.
#define STATE_IDLE 0 // Must be zero. No flags.
#define STATE_ALARM bit(0) // In alarm state. Locks out all g-code processes. Allows
settings access.
#define STATE_CHECK_MODE bit(1) // G-code check mode. Locks out planner and motion
only.
#define STATE_HOMING bit(2) // Performing homing cycle
#define STATE_CYCLE bit(3) // Cycle is running or motions are being executed.
#define STATE_HOLD bit(4) // Active feed hold
#define STATE_SAFETY_DOOR bit(5) // Safety door is ajar. Feed holds and de-energizes system.
#define STATE_MOTION_CANCEL bit(6) // Motion cancel by feed hold and return to idle.

// Define system suspend states.
#define SUSPEND_DISABLE 0 // Must be zero.
#define SUSPEND_ENABLE_HOLD bit(0) // Enabled. Indicates the cycle is active and currently
undergoing a hold.
#define SUSPEND_ENABLE_READY bit(1) // Ready to resume with a cycle start command.
#define SUSPEND_ENERGIZE bit(2) // Re-energizes output before resume.
#define SUSPEND_MOTION_CANCEL bit(3) // Cancels resume motion. Used by probing routine.

// Define global system variables
typedef struct {
uint8_t abort; // System abort flag. Forces exit back to main loop for reset.
uint8_t state; // Tracks the current state of Grbl.
uint8_t suspend; // System suspend bitflag variable that manages holds, cancels,

and safety door.
uint8_t soft_limit; // Tracks soft limit errors for the state machine. (boolean)

int32_t position[N_AXIS]; // Real-time machine (aka home) position vector in steps.
// NOTE: This may need to be a volatile variable, if problems

arise.

int32_t probe_position[N_AXIS]; // Last probe position in machine coordinates and steps.
uint8_t probe_succeeded; // Tracks if last probing cycle was successful.
uint8_t homing_axis_lock; // Locks axes when limits engage. Used as an axis motion mask

in the stepper ISR.
} system_t;
extern system_t sys;

volatile uint8_t sys_probe_state; // Probing state value. Used to coordinate the probing cycle with
stepper ISR.
volatile uint8_t sys_rt_exec_state; // Global realtime executor bitflag variable for state management.
See EXEC bitmasks.
volatile uint8_t sys_rt_exec_alarm; // Global realtime executor bitflag variable for setting various
alarms.

// Initialize the serial protocol
void system_init();

// Returns if safety door is open or closed, based on pin state.
uint8_t system_check_safety_door_ajar();

// Executes an internal system command, defined as a string starting with a '$'
uint8_t system_execute_line(char *line);

// Execute the startup script lines stored in EEPROM upon initialization
void system_execute_startup(char *line);

// Returns machine position of axis 'idx'. Must be sent a 'step' array.
float system_convert_axis_steps_to_mpos(int32_t *steps, uint8_t idx);

// Updates a machine 'position' array based on the 'step' array sent.
void system_convert_array_steps_to_mpos(float *position, int32_t *steps);

// CoreXY calculation only. Returns x or y-axis "steps" based on CoreXY motor steps.
#ifdef COREXY
int32_t system_convert_corexy_to_x_axis_steps(int32_t *steps);
int32_t system_convert_corexy_to_y_axis_steps(int32_t *steps);

#endif

#endif

D. Lampiran Gambar

Gambar D.1 Alat dan bahan

Gambar D.2 Tampak depan mesin CNC Router mini

Gambar D.3 Mesin CNC bersama penulis

