[krvtk] Editor Decision

Dari: Mutiasari Kurnia Devi (noreply@sttnas.ac.id)

Kepada: arie_adnyana@yahoo.com

Tanggal: Rabu, 14 Oktober 2020 16.07 GMT+7

A.A Inung Arie Adnyano:

We have reached a decision regarding your submission to KURVATEK, "A ANALISIS DEWATERING SYSTEM DALAM TAMBANG BAWAH TANAH: ANALISIS DEWATERING SYSTEM DALAM TAMBANG BAWAH TANAH".

Our decision is to accept your submission with revision.

Mutiasari Kurnia Devi Institut Teknologi Nasional Yogyakarta mutiasari@sttnas.ac.id

Reviewer A:

Recommendation: Revisions Required

Apakah Makalah Original?

Ya

Apakah judul makalah sesuai isinya?

Ya

Apakah abstrak mencerminkan isi makalah?

Ya

Apakah kata kunci mengindikasikan penelitian?

Ya

Apakah metodologi penelitian atau pendekatan pemecahan masalah dijelaskan secara jelas?

Ya

Apakah penyajian data dilakukan dengan benar?

Ya

Apakah penggunaan table dan gambar membantu penjelasan?

1 of 2 11/29/2021, 10:38 AM

Ya

Apakah pembahasan dan/ analisis relevan dengan hasil penelitian?

Ya

Apakah referensi yang digunakan relevan?

Ya

Kontribusi untuk ilmu pengetahuan

В

Originalitas

В

Sistematik

В

Tata Bahasa

В

Ketelitian penulisan

В

KEPUTUSAN REVIEWER MAKALAH

Dapat diterbitkan dengan revisi minor

Komentar Tentang Makalah

- 1. Untuk judul sebaiknya ditambahkan jenis tambang nya yaitu emas. Ini adalah tambang emas bawah tanah
- 2. Paper tersebut sudah baik, namun perlu diperbaiki bagan alir penelitian mengenai penggunaan loop dan keterangan nya, belum tertulis ya dan tidak pada loop belah ketupat.

_ Kurvatek (e-ISSN

2477-7870) http://journal.itny.ac.id/index.php/krvtk

B-1852-Article Text-5523-1-2-20200619.docx 506.5kB

2 of 2 11/29/2021, 10:38 AM

ANALISIS *DEWATERING SYSTEM* DALAM TAMBANG BAWAH TANAH

Comment [A1]: Untuk judul sebaiknya ditambahkan jenis tambang nya yaitu emas. Ini adalah tambang emas bawah tanah

Abstrak

Lokasi penambangan bawah tanah Ciurug L.450 selatan terdapat banyak air yang masuk atau tergenang di dalam lubang bukaan tambang. Pada Ciurug L.450 selatan terdapat 10 *mine sump*. Sistem pemompaan mengalirkan dari satu *mine sump* ke *mine sump* berikutnya sampai *mine sump* utama. Pompa yang digunakan 24 unit dan dipakai secara bergantian karena daya listrik terbatas dan satu pompa bekerja 15 jam/hari. Tujuan penelitian ini mengurangi jumlah pompa yang tidak bekerja secara maksimal dan pemakaian daya listrik. Pengukuran debit air tanah dilakukan secara manual di tiga lokasi yaitu *Ramp Down* A, *Ramp Down* B, dan *Ramp Down* C menggunakan paritan. Berdasarkan pengamatan dan analisis data, debit air tanah XC 445 2.899 (m³/m), XC 438 B 8.940 (m³/m), dan XC 438 A 1.440 (m³/m). Konsumsi listrik aktual 1561,7 Kw berkurang setelah dirancang menjadi 1061.5 Kw, dan hasil rancangan 19 unit pompa yang digunakan.

Kata Kunci: Sistem Penyaliran, Pompa, Debit Air

Abstract

Underground mining location Ciurug L.450 south, there is a lot of water entering or stagnant in the mine opening hole. At Ciurug L.450 south there are 10 mine sumps. The pumping system flows from one mine sump to the next mine sump to the main mine sump. The pump is used 24 units and is used interchangeably because electricity is limited and one pump works 15 hours / day. The purpose of this study is to reduce the number of pumps that do not work optimally and the use of electric power. Groundwater discharge measurements were carried out manually in three locations namely Ramp Down A, Ramp Down B, and Ramp Down C using trenches. Based on observations and data analysis, groundwater discharge XC 445 2,899 (m3/m), XC 438 B 8,940 (m3/m), and XC 438 A 1,440 (m3/m). The actual electricity consumption of 1561,7 Kw was reduced after being designed to be 1061.5 Kw, and a design 19 pumps units was used.

Keywords: Flow System, Pump, Water Discharge

1. PENDAHULUAN

Lokasi penambangan bawah tanah Ciurug L.450 selatan terbagi atas tiga zona akifer yaitu 70% akifer celah, 25% aquitard dan 5% semi aquifuge, ketiga kelompok sistem akifer tersebut termasuk kedalam sistem akifer sekunder, karena sistem alirnya tidak melalui ruang antar butir [1]. Hasil observasi yang peneliti lakukan, ditemukannya genangan air di beberapa titik pada lobang tambang Ciurug L.450 bagian Selatan. Dimana genangan air ini merupakan genangan air terbesar, sumbernya berasal dari rekahan dan *joint* yang terdapat pada terowongan tersebut. Pada lobang tambang Ciurug L.450 bagian Selatan merupakan daerah yang memiliki struktur yang intensif, berupa joint serta bidang-bidang perlapisan yang merupakan saluran utama dari sistem aliran pada sistem akifer sekunder yang masuk ke terowongan.

Besarnya debit air yang masuk ke lokasi penambangan dan belum ada pengukuran debit air secara detail pada lubang tambang *Ciurug* L.450 Selatan mengakibatkan lokasi tambang sering terjadi kebanjiran. Sistem penyaliran pada Ciurug L.450 Selatan menggunakan sistem pemompaan dan memiliki 10 *mine sump*. Sistem kerja pompa dengan mengalirkan air dari satu *sump* ke *sump* yang lain. Pompa yang digunakan saat ini sebanyak 24 unit dan hanya bisa dihidupkan secara bergantian karena daya listrik yang terbatas, satu pompa maksimal dihidupkan 15 jam/hari. Oleh karena itu pompa tidak bisa bekerja maksimal dan mengakibatkan suplai listrik yang seharusnya diperuntukan untuk aktifitas yang lain menjadi terganggu. Pada Ciurug L.450 pompa yang digunakan tidak mampu mengeringkan air karena jumlah debit air yang begitu besar dan tidak sesuai dengan perkiraan awal perencanaan.

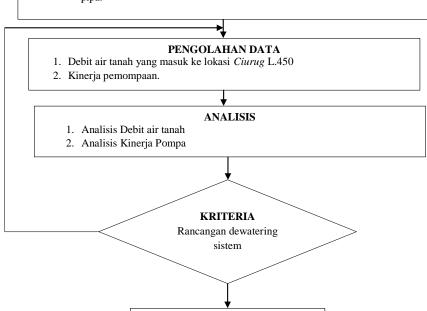
Tujuan dari penulisan makalah ini adalah untuk menganalisis debit air yang masuk ke *Ciurug* L.450 Selatan, dan merencanakan ulang kembali sistem instalansi dewatering dilokasi *Ciurug* L.450.

2. METODE PENELITIAN

Penelitian ini dilakukan dengan cara pengambilan data dilokasi *Ciurug* L.450 dan data sekunder. Metode penelitian dijelaskan pada Gambar 1 dibawah ini.

PERMASALAHAN

- 1. Debit air tanah yang masuk dilokasi Ciurug L.450
- 2. Jam operasional pompa yang pendek berdampak ke jumlah pompa


PENGAMBILAN DATA

1. Data Primer

- a. Debit air tanah
- Panjang pipa, jalur pipa, jumlah belokan pipa dan jenis pipa.

2. Data Sekunder

- a. Spesifikasi pompa
- b. Peta layout tambang
- c. Data litologi dan geologi

Gambar 1. Bagan Alir Metode Penelitian

KESIMPULAN

2.1 Metode Pengukuran Debit Air

Pengukuran dengan metode paritan pengukuran dilakukan dengan menggunakan dimensi paritan.

Untuk penampang lapangan diambil persegi panjang, maka rumusnya [2] :
$$Q = \frac{(P \times L \times T) \, atau \, V}{S} \tag{1}$$

Comment [A2]: Paper tersebut sudah baik, namun perlu diperbaiki bagan alir penelitian mengenai penggunaan loop dan keterangan nya, belum tertulis ya dan tidak pada loop belah ketunat

Keterangan:

V = volume penampang (m3)

P = panjang penampang (m)

L = lebar penampang (m)

T = tinggi (diambil dari kedalaman)

S = Waktu (detik)

Untuk menghitung nilai debit air nilai waktu diambil dari rata rata arus yang menggunakan kotak kecil dan dikonversikan ke menit.

2.2 Perhitungan Head Pompa

Untuk perencanaan pemompaan harus dihitung dulu head totalnya, dengan rumus [3]:

a. Static Head(Hs)

Static head adalah kehilangan energi yang disebabkan oleh perbedaan tinggi antara tempat penampungan dengan tempat pembuangan.

$$Hs = h_2 - h_1 \tag{2}$$

Keterangan:

h₂= Elevasi air keluar

h₁= Elevasi air masuk

b. Velocity Head(Hv)

Velocity Head adalah kehilangan yang diakibatkan oleh kecepatan air yang melalui pompa.

$$Hv = v^2 / 2g \tag{3}$$

Keterangan:

 V^2 = Kecepatan air yang melalui pompa (m/dt)

g = Gaya gravitasi bumi (9,8 m/dt)

c. Friction head (Hf)

Tahanan (kerugian) terhadap liquid yang mengalir di dalam pipa serta turbulensi yang di akibatkan adanya pergesakan liquid dengan kekasaran permukaan diding pipa bagian dalam.

$$Hf = \left(\frac{10,666 \times Q^{1,85}}{C^{1,85} \times D^{4,85}}\right) X L$$
 (4)

Keter angan:

C = Koefisien D = Diameter Pipa (m)Q = laju aliran (m³/s) L = Panjang pipa (m)

d. Shock loss Head (Hl)

Kehilangan ini pada jaringan pipa disebabkan oleh perubahan-perubahan mendadak dari geometri pipa, belokan-belokan, katup-katup dan sambungan-sambungan.

$$Hl = Kv^2 / 2g (5)$$

Keterangan:

Ř

K = Koefisien kekasaran pipa yang tergantung pada jari-jari belokan, diameter pipa dan sudut yang dibentuk antara pipa dan bidang datar.

$$K = [0,131 + 1,847 \left(\frac{D}{2R}\right)^{3,5}] x \left(\frac{\theta}{90}\right)^{0.5}$$
 (6)

v = Kecepatan aliran fluida (air) dalam pipa (m/detik)

g = Gaya gravitasi (9.8 m/detik^2) A = Luas basah $(\pi.r^2)$

= Jari-jari lengkung belokan (m) Φ = Besar sudut belokan, 0

P = Keliling basah $(2\pi.r)$

Jadi total kehilangan head (Ht) adalah ;

$$Ht = H_c + H_v + H_f + H_l \tag{7}$$

Kemudian untuk menghitung debit air yang mampu dikeluarkan oleh pompa adalah dengan persamaan [4]:

$$Q_2 = Q_1 H_2 / H_1$$
 (8)

Keterangan:

 Q_1 = Debit pompa dari pabrik, m³/det H_1 = *Head* dari pabrik (belum dikoreksi), m

 Q_2 = Debit pompa setelah dikoreksi, m³/det H_2 = *Head* total perhitungan, m

e. Kavitasi

adalah gejala menguapnya zat cair yang mengalir, karena tekanannya berkurang sampai dibawah tekanan uap jenuhnya sehingga akan timbul gelembung-gelembung uap zat cair. Jika pompa dijalankan terus-menerus dalam keadaan kavitasi, akan menyebabkan kerusakan terhadap area impeler, sehingga pada akhirnya terjadi erosi. Turunnya performance, timbulnya suara dan getaran, serta rusaknya pompa merupakan kerugian-kerugian dari timbulnya kavitasi. Head isap positif net (NPSH) merupakan ukuran dari *head suction* terendah yang memungkinkan bagi cairan untuk tidak mengalami kavitasi. Ada dua macam NPSH [3], yaitu:

1) Net Positive Suction Head Available (NPSHA) $hsv = \frac{Pa}{\gamma} - \frac{Pv}{\gamma} - hs - \sum Hl^s$

$$hsv = \frac{Pa}{\gamma} - \frac{Pv}{\gamma} - hs - \sum Hl^s$$
 (9)

Keterangan:

hsv = NPSH yang tersedia pada instalasi (m)

 $\frac{Pa}{dt}$ = tekanan absolut diatas permukaan cairan

 $\frac{7}{2}$ = tekanan uap cairan yang dipompa pada temperatur pemompaan

hs = head isap statis (m)

 $\sum H l^s$ = Head loss pada pipa isap (m)

2) Net Positive Suction Head Require (NPSHR)

$$Hsvn = \sigma x Hn \tag{10}$$

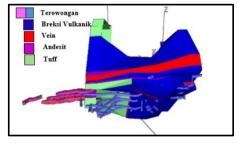
Keterangan:

Hsvn = NPSH yang dibutuhkan (m)

 σ = Koefisien kavitasi

Hn = Head total (m)

Agar pompa tidak mengalami kavitasi NPSHA harus lebih besar dari NPSHR.


3. HASIL DAN ANALISIS

Dalam sistem penambangan bawah tanah pada tambang Ciurug L.450 sering terjadi banyak air yang masuk atau tergenang. Pada awal tahun 2015 pada lobang tambang Ciurug L.450 pernah terendam air hingga mencapai atap terowongan, oleh sebab itu penambangan tidak bisa dilakukan dan butuh waktu hingga setahun untuk mengeringkannya. Penyebabnya adalah terganggunya stabilitas air tanah pada batuan akibat dari penerobosan kegiatan tambang.

3.1 Sistem Pengukuran Debit Air

Ciurug L.450 merupakan daerah yang memiliki struktur yang banyak rekahan. Oleh karena itu dibutuhkan model penampang 3D hidrogeologi untuk mengetahui jenis batuan yang ada di Ciurug L.450 bagian selatan. Dapat dilihat pada Gambar 1.

Pada Gambar 1 dapat dilihat dari model penampang 3D hidrogeologi terlihat bahwa terowongan memotong jenis batuan breksi vulkanik yang merupakan jenis dari akifer sekunder. Pada daerah ini air muncul dari rekahan yang terbentuk oleh batuan breksi vulkanik. Untuk mengetahui seberapa banyak air yang muncul dari rekahan tersebut dilakukan pengukuran langsung ke lapangan.Pengukuran secara langsung dilakukan dengan cara mengukur air pada titik yang merupakan sumber air terbesar dilokasi penelitian. Pada pengukuran ini dilakakukan pada daerah Ciurug L.450 bagian selatan yang terbagi atas dua bagian yaitu RD A dan RD B.

Gambar 1. Penampang 3D Hidrogeologi Ciurug L.450

Data debit air yang diambil merupakan data maksimum selama dilakukannya pengukuran debit air yang berlokasi di Ciurug L.450 dengan menggunakan metode paritan. Debit yang diukur pada lokasi di Gambar 2 diukur dengan menggunakan benang dan meteran dimana ketetapan panjang dari alur sebesar 3 m sesuai dengan lebar dimensi terowongan bisa dilihat pada Gambar 2.

Gambar 2. Pengambilan Data Debit Air

3.2 Kinerja Pompa

Jumlah pompa disediakan saat ini cukup untuk mengeluarkan air dari terowongan tetapi sistem pemompaan disetiap *Mine Sump* tidak sesuai dengan debit air yang masuk. Oleh karena itu penambahan jumlah pompa tidak perlu, hanya perlu memperbaiki sistem pemompaan disetiap *Mine Sump*. Banyaknya pemakaian pompa yang *out of curve* dikarenakan *head* minimum pada spesifikasi pompa tidak sesuai dengan aktual, dengan kondisi tersebut dimungkinkan untuk penggantian pompa yang lebih rendah *head* minimumnya. Terdapat pompa dilokasi Ciurug L.450 yang mengalami kavitasi sehingga harus diganti pompa sesuai dengan spesifikasi dikarenakan dengan seiring waktu berjalan pompa bisa mengalami kerusakan.

3.3 Kinerja pompa pada Mine Sump RD C, Mine Sump RD B dan RD A.

Untuk menghitung debit air yang masuk ke Ciurug L.450 menggunakan persamaan 1, setelah itu melihat data dari spesifikasi pompa. Hasil kinerja pompa dapat dilihat pada Tabel 1.

Tabel 1. Kinerja Pompa pada *Mine Sump* RD C, Mine Sump RD B dan RD A.

No	Lokasi	Jenis Pompa	Jumlah Pompa	Debit Pompa	Debit Air
1	Mine Sump RD A	Tsurumi LH 637	2	2,840 m3/menit	2,899 m ³ /menit
2	Mine Sump RD B	Tsurumi LH 875 dan 637	4	10,396 m ³ /menit	11,089 m ³ /menit
3	Mine Sump RD C	Tsurumi LH 637	1	3,262 m ³ /menit	1,440 m ³ /menit

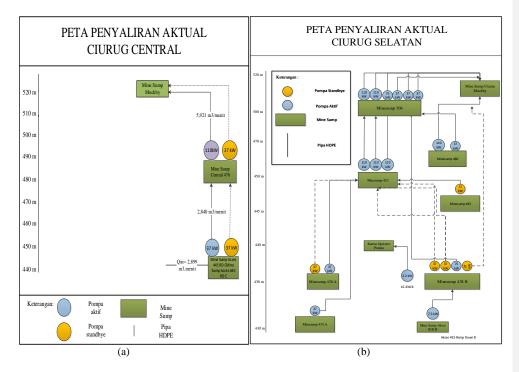
3.4 Kinerja Pompa yang mengalami Kavitasi

Lokasi *mine sump* 438 Ramp Down B dan *mine sump* 480 terdapat 3 pompa *standbye* yang mengalami kavitasi dari hasil perhitungan komputasi, dimana nilai NPSHa yang tersedia > NPSHr yang diperlukan. Perhitungan kavitasi menggunakan persamaan 9 dan 10. Hasil kinerja pompa yang mengalami kavitasi dapat dilihat pada Tabel 2.

Tabel 2. Pompa yang Mengalami Kavitas

Pipe id	Pompa	NPSHa (m)	NPShr (m)	Lokasi
P1	Tsurumi LH 875	10,195	11,652	Mine Sump 438 RD B
P12	Tsurumi LH 875	10,980	11,359	Mine Sump 452
P13	Warman 4/3 EE-HH	12,480	12,805	Mine sump 480

3.5 Kinerja Kapasitas Aktual Total Head Pompa


Jumlah 24 pompa yang beroperasi terdapat pompa yang tidak sesuai dengan total *head* nya akhirnya dalam proses pemompaan melebihi kapasitas dari spesifikasi seharusnya. Beberapa titik lokasi banyak pompa yang *out of curve* bisa menjadi informasi bahwa pompa yang digunakan bisa diganti dengan spesifikasi yang lebih rendah atau ditambahkan nilai head statis dari elevasi masing- masing pompa dan *mine sump*. Perhitungan Total *Head* pompa menggunakan persamaan 2 sampai 8. Hasil perhitungan dapat dilihat pada Tabel 3.

Tabel 3. Perhitungan Total Head Pompa

Pipe id	Pompa	Lokasi	Total head (m)	Head minimum pada pompa (m)
P2	Tsurumi LH 875	Mine Sump 438 Ramp Down B	19,326	20
P3	Tsurumi LH 637	Mine Sump 438 Ramp Down B	17,493	43
P4	Tsurumi LH 637	Mine Sump 438 Ramp Down B	17,493	43
P5	Tsurumi LH 637	Mine Sump 438 Ramp Down A	19,932	43
P6	Tsurumi LH 637	Mine Sump 438 Ramp Down A	17,621	43
P7	Tsurumi LH 637	Mine Sump 435 Ramp Down A	22,256	43
P8	Tsurumi KTZ 7,5 Kw	Mine Sump 435 Ramp Down A	5,772	8
P9	Warman 4/3 EE HH	Mine Sump 452	52,872	69
P10	Warman 4/3 EE HH	Mine Sump 452	52,872	69
P11	Warman 4/3 EE HH	Mine Sump 452	52,872	69
P14	Tsurumi LH 637	Mine Sump 480	19,975	43
P15	Warman 4/3 EE HH	Mine Sump 504	38,788	69
P16	Warman 4/3 EE HH	Mine Sump 504	38,788	69
P18	Tsurumi LH 637	Mine Sump 504	20,295	43
P19	Tsurumi LH 637	Mine Sump 504	20,596	43

3.6 Sistem Dewatering di Ciurug L.450

Skema sistem Dewatering yang peneliti buat pada waktu penelitian di lokasi Ciurug Central dan selatan dengan total 2 *sump* di Ciurug Central dan 7 Sump di Ciurug Selatan berikut informasi yang ada di Gambar 3.

Gambar 3. (a) Alur Pemompaan Ciurug Central dan (b) Ciurug Selatan

3.7 Rancangan Sistem Dewatering di Ciurug L.450

Rancangan pompa yang dipakai setelah proses evaluasi dinilai banyak memakai pompa yang aktif dan juga pompa yang dipakai head terlalu minim, banyak pompa yang di *switch* ke *standbye* dan yang aktif dikurangi sehingga debit air yang masuk dan debit air yang keluar sama atau lebih besar debit air yang masuk.

Untuk *mine sump* 504 dinonaktifkan ke fungsi *standbye* dikarenakan pompa yang dimiliki memiliki *head* yang tinggi sehingga sump yang aktif *Mine sump* 438, 480, 519 karena perusahaan hanya memiliki pompa yang berspesifikasi *head* tinggi jadi untuk *sump* yang dipakai bisa dengan *head* yang besar untuk hasil rancangan bisa dilihat pada Gambar 4.

Gambar 3. (a) Alur Rancangan Pemompaan Ciurug Central dan (b) Ciurug Selatan

3.8 Pemakaian Konsumsi Listrik

Untuk total pemakaian daya listrik dari hasil rancangan peneliti lakukan pompa berkurang dari 24 pompa menjadi 19 pompa bisa dilihat dalam Tabel 4.

	raber 4. Konsumsi	Listrik	Hasii	Kancanga	an

No	Nama/Jenis Pompa	Power (kW)	Jumlah (unit)	Total Power (kW)
1	Tsurumi KTZ	7.5	3	22.5
2	Tsurumi LH 637	37	7	259
3	Tsurumi LH 875	75	6	450
4	Warman 4/3 EE-HH	110	3	330
Jumlah			19	1061.5

3.9 Diskusi

Analisis kinerja pompa pada lokasi Ciurug L.450, dari debit air yang masuk dan yang keluar pada maka diperlukan perhitungan total debit air yang masuk dan debit air yang keluar pada masing masing lokasi. Perhitungan difokuskan pada pompa yang aktif sedangkan pompa candangan/ standbye tidak dihitung karena pompa yang dipakai 15 jam, setelah 15 jam pompa akan switch ke pompa yang standbye jadi pompa yang dipakai hanya fokus ke pompa yang aktif.

Bisa asumsikan bahwa pompa aktual yang berada dilokasi Ciurug L.450 yang dipakai bisa dikurangi dan pompa bisa dialokasikan agar debit air yang masuk dan debit air yang keluar hasilnya sama atau lebih besar sedikit dari debit keluar, sehingga pompa yang digunakan sesuai dengan peruntukannya 15 jam jadi untuk pompa *standbye* tidak perlu ikut membantu pompa yang aktif, kecuali pompa aktif mengalami *breakdown*.

4. KESIMPULAN

Berdasarkan hasil perhitungan debit air dan kinerja pompa di Ciurug L.450. Debit air yang masuk dari lokasi Ramp Down A, bisa diatasi oleh sistem *dewatering* tetapi bisa dirubah dari sistem pengaturan pemompaan dari *standby* pompa. Untuk Ramp Down C pompa tidak mampu dikarenakan kapasitas pompa dengan debit air yang masuk hampir lebih besar menyamai debit air yang masuk sebesar 2,899 sedangkan debit air pompa keluar 2.840 m³/menit. Disarankan mengganti pompa yang diatas spesifikasi diatas Tsurumi LH 637. Terdapat beberapa pompa yang mengalami kavitasi pada pompa Tsurumi LH 875 dan Warman 4/3 EE-HH, kapaitas aktual *head* pompa terdapat 17 pompa yang *head* tidak sesuai dengan aktual sehingga daya kapasitas pompa bisa dikurangi. Hasil dari analisis, pompa bisa dikurangi dayanya sebesar 1061,5 Kw dari 1561.7 Kw, dari 24 pompa di Ciurug menjadi 19 pompa dengan adanya penambahan Pompa Tsurumi 7,5 Kw 2 unit pada lokasi *Mine Sump* 438 A.

UCAPAN TERIMAKASIH

Penelitian ini dapat berjalan dengan baik karena dukungan penuh dari Lembaga Penelitian, Pengabdian Kepada Masyarakat, dan Inovasi (LPPMI) Institut Teknologi Nasional Yogyakarta dan PT. Antam (persero) Tbk UPBE Pongkor yang telah menyediakan lokasi penelitian.

5. DAFTAR PUSTAKA

- [1] PT. Aneka Tambang, Tbk, Data Hidrogeologi PT Aneka Tambang Tbk Unit Bisnis Pertambangan Emas Pongkor, Bogor, Jawa barat. 2019
- [2] Soematri, CD. Hidrologi Teknik (edisi perbaikan). Erlangga. Jakarta. 1999
- [3] Sularso dan Tahara, H. Pompa dan Kompresor. Pradnya Paramita. Jakarta. 2000
- [4] Putra, A.Y.U., Aryanto. Kajian Teknis Optimalisasi Pompa Pada Sistem Penyaliran Tambang Bawah Tanah di PT. Cibaliung Sumber Daya, Provinsi Banten. Prosiding Seminar Rekayasa Teknologi Industri dan Informasi ke 10, Yogyakarta. 2015. 215-225.

[krvtk] Editor Decision

Dari: Mutiasari Kurnia Devi (noreply@sttnas.ac.id)

Kepada: arie_adnyana@yahoo.com

Tanggal: Sabtu, 7 November 2020 17.13 GMT+7

A.A Inung Arie Adnyano:

We have reached a decision regarding your submission to KURVATEK, "A ANALISIS DEWATERING SYSTEM DALAM TAMBANG BAWAH TANAH: ANALISIS DEWATERING SYSTEM DALAM TAMBANG BAWAH TANAH".

Our decision is to accept your submission.

Mutiasari Kurnia Devi Institut Teknologi Nasional Yogyakarta mutiasari@sttnas.ac.id

_____ Kurvatek (e-ISSN 2477-

7870) http://journal.itny.ac.id/index.php/krvtk

B-Analisis Dewatering System Dalam Tambang Emas Bawah Tanah.docx 509.4kB

ANALISIS DEWATERING SYSTEM DALAM TAMBANG EMAS BAWAH TANAH

Abstrak

Lokasi penambangan bawah tanah Ciurug L.450 selatan terdapat banyak air yang masuk atau tergenang di dalam lubang bukaan tambang. Pada Ciurug L.450 selatan terdapat 10 *mine sump*. Sistem pemompaan mengalirkan dari satu *mine sump* ke *mine sump* berikutnya sampai *mine sump* utama. Pompa yang digunakan 24 unit dan dipakai secara bergantian karena daya listrik terbatas dan satu pompa bekerja 15 jam/hari. Tujuan penelitian ini mengurangi jumlah pompa yang tidak bekerja secara maksimal dan pemakaian daya listrik. Pengukuran debit air tanah dilakukan secara manual di tiga lokasi yaitu *Ramp Down* A, *Ramp Down* B, dan *Ramp Down* C menggunakan paritan. Berdasarkan pengamatan dan analisis data, debit air tanah XC 445 2.899 (m³/m), XC 438 B 8.940 (m³/m), dan XC 438 A 1.440 (m³/m). Konsumsi listrik aktual 1561,7 Kw berkurang setelah dirancang menjadi 1061.5 Kw, dan hasil rancangan 19 unit pompa yang digunakan.

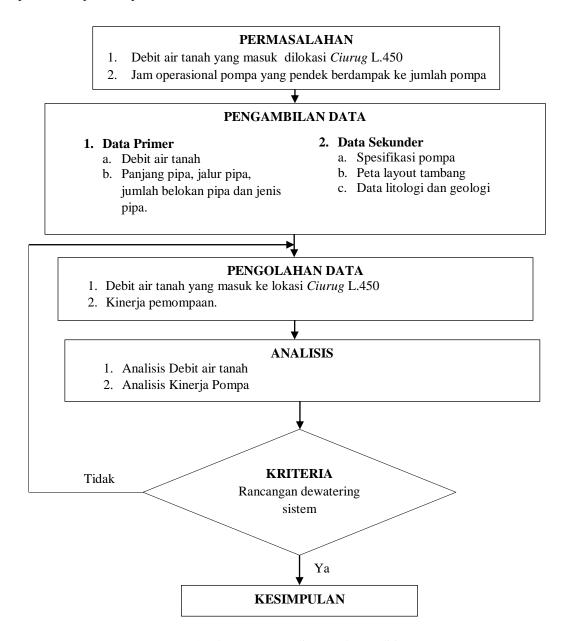
Kata Kunci: Sistem Penyaliran, Pompa, Debit Air

Abstract

Underground mining location Ciurug L.450 south, there is a lot of water entering or stagnant in the mine opening hole. At Ciurug L.450 south there are 10 mine sumps. The pumping system flows from one mine sump to the next mine sump to the main mine sump. The pump is used 24 units and is used interchangeably because electricity is limited and one pump works 15 hours / day. The purpose of this study is to reduce the number of pumps that do not work optimally and the use of electric power. Groundwater discharge measurements were carried out manually in three locations namely Ramp Down A, Ramp Down B, and Ramp Down C using trenches. Based on observations and data analysis, groundwater discharge XC 445 2,899 (m3/m), XC 438 B 8,940 (m3/m), and XC 438 A 1,440 (m3/m). The actual electricity consumption of 1561,7 Kw was reduced after being designed to be 1061.5 Kw, and a design 19 pumps units was used.

Keywords: Flow System, Pump, Water Discharge

1. PENDAHULUAN


Lokasi penambangan bawah tanah Ciurug L.450 selatan terbagi atas tiga zona akifer yaitu 70% akifer celah, 25% aquitard dan 5% semi aquifuge, ketiga kelompok sistem akifer tersebut termasuk kedalam sistem akifer sekunder, karena sistem alirnya tidak melalui ruang antar butir [1]. Hasil observasi yang peneliti lakukan, ditemukannya genangan air di beberapa titik pada lobang tambang Ciurug L.450 bagian Selatan. Dimana genangan air ini merupakan genangan air terbesar, sumbernya berasal dari rekahan dan *joint* yang terdapat pada terowongan tersebut. Pada lobang tambang Ciurug L.450 bagian Selatan merupakan daerah yang memiliki struktur yang intensif, berupa joint serta bidang-bidang perlapisan yang merupakan saluran utama dari sistem aliran pada sistem akifer sekunder yang masuk ke terowongan.

Besarnya debit air yang masuk ke lokasi penambangan dan belum ada pengukuran debit air secara detail pada lubang tambang Ciurug L.450 Selatan mengakibatkan lokasi tambang sering terjadi kebanjiran. Sistem penyaliran pada Ciurug L.450 Selatan menggunakan sistem pemompaan dan memiliki 10 mine sump. Sistem kerja pompa dengan mengalirkan air dari satu sump ke sump yang lain [2]. Pompa yang digunakan saat ini sebanyak 24 unit dan hanya bisa dihidupkan secara bergantian karena daya listrik yang terbatas, satu pompa maksimal dihidupkan 15 jam/hari. Oleh karena itu pompa tidak bisa bekerja maksimal dan mengakibatkan suplai listrik yang seharusnya diperuntukan untuk aktifitas yang lain menjadi terganggu. Pada Ciurug L.450 pompa yang digunakan tidak mampu mengeringkan air karena jumlah debit air yang begitu besar dan tidak sesuai dengan perkiraan awal perencanaan.

Tujuan dari penulisan makalah ini adalah untuk menganalisis debit air yang masuk ke *Ciurug* L.450 Selatan, dan merencanakan ulang kembali sistem instalansi dewatering dilokasi *Ciurug* L.450.

2. METODE PENELITIAN

Penelitian ini dilakukan dengan cara pengambilan data dilokasi *Ciurug* L.450 dan data sekunder. Metode penelitian dijelaskan pada Gambar 1 dibawah ini.

Gambar 1. Bagan Alir Metode Penelitian

2.1 Metode Pengukuran Debit Air

Pengukuran dengan metode paritan pengukuran dilakukan dengan menggunakan dimensi paritan. Untuk penampang lapangan diambil persegi panjang, maka rumusnya [3]:

$$Q = \frac{(P \times L \times T) \operatorname{atau} V}{S}$$
 (1)

Keterangan:

V = volume penampang (m3)

P = panjang penampang (m)

L = lebar penampang (m)

T = tinggi (diambil dari kedalaman)

S = Waktu (detik)

Untuk menghitung nilai debit air nilai waktu diambil dari rata rata arus yang menggunakan kotak kecil dan dikonversikan ke menit.

2.2 Perhitungan Head Pompa

Untuk perencanaan pemompaan harus dihitung dulu head totalnya, dengan rumus [4]:

a. Static Head(Hs)

Static head adalah kehilangan energi yang disebabkan oleh perbedaan tinggi antara tempat penampungan dengan tempat pembuangan.

$$Hs = h_2 - h_1 \tag{2}$$

Keterangan:

h₂= Elevasi air keluar

h₁= Elevasi air masuk

b. *Velocity Head(Hv)*

Velocity Head adalah kehilangan yang diakibatkan oleh kecepatan air yang melalui pompa.

$$Hv = v^2 / 2g \tag{3}$$

Keterangan:

V²= Kecepatan air yang melalui pompa (m/dt)

g = Gaya gravitasi bumi (9,8 m/dt)

c. Friction head (Hf)

Tahanan (kerugian) terhadap liquid yang mengalir di dalam pipa serta turbulensi yang di akibatkan adanya pergesakan liquid dengan kekasaran permukaan diding pipa bagian dalam.

$$Hf = \left(\frac{10,666 \times Q^{1,85}}{C^{1,85} \times D^{4,85}}\right) X L$$
 (4)

Keterangan:

C = Koefisien D = Diameter Pipa (m) $Q = laju aliran (m^3/s)$ L = Panjang pipa (m)

d. Shock loss Head (Hl)

Kehilangan ini pada jaringan pipa disebabkan oleh perubahan-perubahan mendadak dari geometri pipa, belokan-belokan, katup-katup dan sambungan-sambungan.

$$Hl = Kv^2 / 2g$$
 (5)

Keterangan:

K = Koefisien kekasaran pipa yang tergantung pada jari-jari belokan, diameter pipa dan sudut yang dibentuk antara pipa dan bidang datar.

$$K = [0,131 + 1,847(\frac{D}{2R})^{3,5}]x(\frac{\theta}{90})^{0,5}$$
 (6)

v = Kecepatan aliran fluida (air) dalam pipa (m/detik)

 $g = Gaya gravitasi (9.8 m/detik²) A = Luas basah (<math>\pi$.r²)

R = Jari-jari lengkung belokan (m) Φ = Besar sudut belokan, 0

P = Keliling basah $(2\pi.r)$

Jadi total kehilangan head (Ht) adalah;

$$Ht = H_c + H_v + H_f + H_l$$
 (7)

Kemudian untuk menghitung debit air yang mampu dikeluarkan oleh pompa adalah dengan persamaan [4]:

$$Q_2 = Q_1 H_2 / H_1$$
 (8)

Keterangan:

 Q_1 = Debit pompa dari pabrik, m³/det H_1 = Head dari pabrik (belum dikoreksi), m

 Q_2 = Debit pompa setelah dikoreksi, m³/det H_2 = *Head* total perhitungan, m

e. Kavitasi

adalah gejala menguapnya zat cair yang mengalir, karena tekanannya berkurang sampai dibawah tekanan uap jenuhnya sehingga akan timbul gelembung-gelembung uap zat cair. Jika pompa dijalankan terus-menerus dalam keadaan kavitasi, akan menyebabkan kerusakan terhadap area impeler, sehingga pada akhirnya terjadi erosi. Turunnya performance, timbulnya suara dan getaran, serta rusaknya pompa merupakan kerugian-kerugian dari timbulnya kavitasi. Head isap positif net (NPSH) merupakan ukuran dari *head suction* terendah yang memungkinkan bagi cairan untuk tidak mengalami kavitasi. Ada dua macam NPSH [3], yaitu:

1) Net Positive Suction Head Available (NPSHA)

$$hsv = \frac{Pa}{\gamma} - \frac{Pv}{\gamma} - hs - \sum Hl^s$$
 (9)

Keterangan:

hsv = NPSH yang tersedia pada instalasi (m)

 $\frac{Pa}{}$ = tekanan absolut diatas permukaan cairan

Pv = tekanan uap cairan yang dipompa pada temperatur pemompaan

hs = head isap statis (m)

 $\sum H l^s$ = Head loss pada pipa isap (m)

2) Net Positive Suction Head Require (NPSHR)

$$Hsvn = \sigma x Hn \tag{10}$$

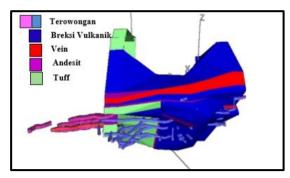
Keterangan:

Hsvn = NPSH yang dibutuhkan (m)

σ = Koefisien kavitasi

Hn = Head total (m)

Agar pompa tidak mengalami kavitasi NPSHA harus lebih besar dari NPSHR.


3. HASIL DAN ANALISIS

Dalam sistem penambangan bawah tanah pada tambang Ciurug L.450 sering terjadi banyak air yang masuk atau tergenang. Pada awal tahun 2015 pada lobang tambang Ciurug L.450 pernah terendam air hingga mencapai atap terowongan, oleh sebab itu penambangan tidak bisa dilakukan dan butuh waktu hingga setahun untuk mengeringkannya. Penyebabnya adalah terganggunya stabilitas air tanah pada batuan akibat dari penerobosan kegiatan tambang.

3.1 Sistem Pengukuran Debit Air

Ciurug L.450 merupakan daerah yang memiliki struktur yang banyak rekahan. Oleh karena itu dibutuhkan model penampang 3D hidrogeologi untuk mengetahui jenis batuan yang ada di Ciurug L.450 bagian selatan. Dapat dilihat pada Gambar 1.

Pada Gambar 1 dapat dilihat dari model penampang 3D hidrogeologi terlihat bahwa terowongan memotong jenis batuan breksi vulkanik yang merupakan jenis dari akifer sekunder. Pada daerah ini air muncul dari rekahan yang terbentuk oleh batuan breksi vulkanik. Untuk mengetahui seberapa banyak air yang muncul dari rekahan tersebut dilakukan pengukuran langsung ke lapangan.Pengukuran secara langsung dilakukan dengan cara mengukur air pada titik yang merupakan sumber air terbesar dilokasi penelitian. Pada pengukuran ini dilakakukan pada daerah Ciurug L.450 bagian selatan yang terbagi atas dua bagian yaitu RD A dan RD B.

Gambar 1. Penampang 3D Hidrogeologi Ciurug L.450

Data debit air yang diambil merupakan data maksimum selama dilakukannya pengukuran debit air yang berlokasi di Ciurug L.450 dengan menggunakan metode paritan. Debit yang diukur pada lokasi di Gambar 2 diukur dengan menggunakan benang dan meteran dimana ketetapan panjang dari alur sebesar 3 m sesuai dengan lebar dimensi terowongan bisa dilihat pada Gambar 2.

Gambar 2. Pengambilan Data Debit Air

3.2 Kinerja Pompa

Jumlah pompa disediakan saat ini cukup untuk mengeluarkan air dari terowongan tetapi sistem pemompaan disetiap *Mine Sump* tidak sesuai dengan debit air yang masuk. Oleh karena itu penambahan jumlah pompa tidak perlu, hanya perlu memperbaiki sistem pemompaan disetiap *Mine Sump*. Banyaknya pemakaian pompa yang *out of curve* dikarenakan *head* minimum pada spesifikasi pompa tidak sesuai dengan aktual, dengan kondisi tersebut dimungkinkan untuk penggantian pompa yang lebih rendah *head* minimumnya. Terdapat pompa dilokasi Ciurug L.450 yang mengalami kavitasi sehingga harus diganti pompa sesuai dengan spesifikasi dikarenakan dengan seiring waktu berjalan pompa bisa mengalami kerusakan.

3.3 Kinerja pompa pada Mine Sump RD C, Mine Sump RD B dan RD A.

Untuk menghitung debit air yang masuk ke Ciurug L.450 menggunakan persamaan 1, setelah itu melihat data dari spesifikasi pompa. Hasil kinerja pompa dapat dilihat pada Tabel 1.

Tabel 1. Kinerja Pompa pada Mine Sump RD C, Mine Sump RD B dan RD A.

No	Lokasi	Jenis Pompa	Jumlah Pompa	Debit Pompa	Debit Air
1	Mine Sump RD A	Tsurumi LH 637	2	2,840 m3/menit	2,899 m ³ /menit
2	Mine Sump RD B	Tsurumi LH 875 dan 637	4	10,396 m ³ /menit	11,089 m ³ /menit
3	Mine Sump RD C	Tsurumi LH 637	1	3,262 m ³ /menit	1,440 m ³ /menit

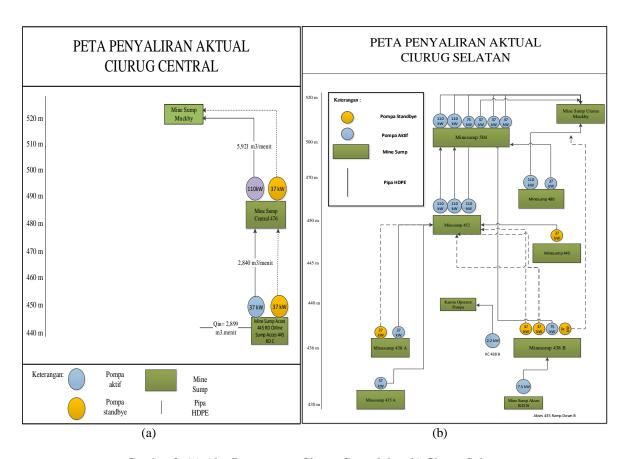
3.4 Kinerja Pompa yang mengalami Kavitasi

Lokasi *mine sump* 438 Ramp Down B dan *mine sump* 480 terdapat 3 pompa *standbye* yang mengalami kavitasi dari hasil perhitungan komputasi, dimana nilai NPSHa yang tersedia > NPSHr yang diperlukan. Perhitungan kavitasi menggunakan persamaan 9 dan 10. Hasil kinerja pompa yang mengalami kavitasi dapat dilihat pada Tabel 2.

Tabel 2. Pompa yang Mengalami Kavitas

Pipe id	Pompa	NPSHa (m)	NPShr (m)	Lokasi
P1	Tsurumi LH 875	10,195	11,652	Mine Sump 438 RD B
P12	Tsurumi LH 875	10,980	11,359	Mine Sump 452
P13	Warman 4/3 EE-HH	12,480	12,805	Mine sump 480

3.5 Kinerja Kapasitas Aktual Total *Head* Pompa

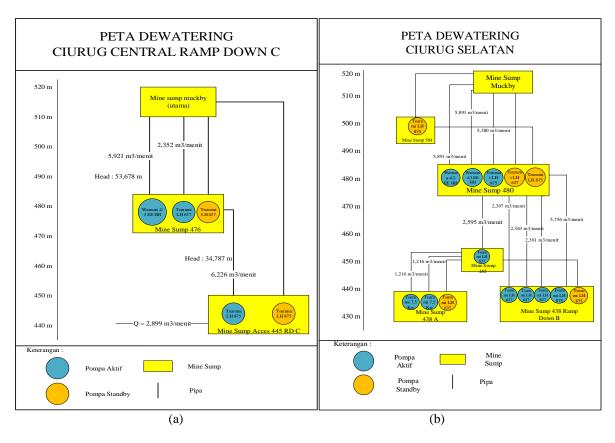

Jumlah 24 pompa yang beroperasi terdapat pompa yang tidak sesuai dengan total *head* nya akhirnya dalam proses pemompaan melebihi kapasitas dari spesifikasi seharusnya. Beberapa titik lokasi banyak pompa yang *out of curve* bisa menjadi informasi bahwa pompa yang digunakan bisa diganti dengan spesifikasi yang lebih rendah atau ditambahkan nilai head statis dari elevasi masing- masing pompa dan *mine sump*. Perhitungan Total *Head* pompa menggunakan persamaan 2 sampai 8. Hasil perhitungan dapat dilihat pada Tabel 3.

Tabel 3. Perhitungan Total *Head* Pompa

Pipe id	Pompa	Lokasi	Total head (m)	Head minimum pada pompa (m)
P2	Tsurumi LH 875	Mine Sump 438 Ramp Down B	19,326	20
P3	Tsurumi LH 637	Mine Sump 438 Ramp Down B	17,493	43
P4	Tsurumi LH 637	Mine Sump 438 Ramp Down B	17,493	43
P5	Tsurumi LH 637	Mine Sump 438 Ramp Down A	19,932	43
P6	Tsurumi LH 637	Mine Sump 438 Ramp Down A	17,621	43
P7	Tsurumi LH 637	Mine Sump 435 Ramp Down A	22,256	43
P8	Tsurumi KTZ 7,5 Kw	Mine Sump 435 Ramp Down A	5,772	8
P9	Warman 4/3 EE HH	Mine Sump 452	52,872	69
P10	Warman 4/3 EE HH	Mine Sump 452	52,872	69
P11	Warman 4/3 EE HH	Mine Sump 452	52,872	69
P14	Tsurumi LH 637	Mine Sump 480	19,975	43
P15	Warman 4/3 EE HH	Mine Sump 504	38,788	69
P16	Warman 4/3 EE HH	Mine Sump 504	38,788	69
P18	Tsurumi LH 637	Mine Sump 504	20,295	43
P19	Tsurumi LH 637	Mine Sump 504	20,596	43

3.6 Sistem Dewatering di Ciurug L.450

Skema sistem Dewatering yang peneliti buat pada waktu penelitian di lokasi Ciurug Central dan selatan dengan total 2 *sump* di Ciurug Central dan 7 Sump di Ciurug Selatan berikut informasi yang ada di Gambar 3.



Gambar 3. (a) Alur Pemompaan Ciurug Central dan (b) Ciurug Selatan

3.7 Rancangan Sistem Dewatering di Ciurug L.450

Rancangan pompa yang dipakai setelah proses evaluasi dinilai banyak memakai pompa yang aktif dan juga pompa yang dipakai head terlalu minim, banyak pompa yang di *switch* ke *standbye* dan yang aktif dikurangi sehingga debit air yang masuk dan debit air yang keluar sama atau lebih besar debit air yang masuk.

Untuk *mine sump* 504 dinonaktifkan ke fungsi *standbye* dikarenakan pompa yang dimiliki memiliki *head* yang tinggi sehingga sump yang aktif *Mine sump* 438, 480, 519 karena perusahaan hanya memiliki pompa yang berspesifikasi *head* tinggi jadi untuk *sump* yang dipakai bisa dengan *head* yang besar untuk hasil rancangan bisa dilihat pada Gambar 4.

Gambar 3. (a) Alur Rancangan Pemompaan Ciurug Central dan (b) Ciurug Selatan

3.8 Pemakaian Konsumsi Listrik

Untuk total pemakaian daya listrik dari hasil rancangan peneliti lakukan pompa berkurang dari 24 pompa menjadi 19 pompa bisa dilihat dalam Tabel 4.

No	Nama/Jenis Pompa	Power (kW)	Jumlah (unit)	Total Power (kW)
1	Tsurumi KTZ	7.5	3	22.5
2	Tsurumi LH 637	37	7	259
3	Tsurumi LH 875	75	6	450
4	Warman 4/3 EE-HH	110	3	330
Iumlah			19	1061.5

Tabel 4. Konsumsi Listrik Hasil Rancangan

3.9 Diskusi

Analisis kinerja pompa pada lokasi Ciurug L.450, dari debit air yang masuk dan yang keluar pada maka diperlukan perhitungan total debit air yang masuk dan debit air yang keluar pada masing masing lokasi. Perhitungan difokuskan pada pompa yang aktif sedangkan pompa candangan/ standbye tidak dihitung karena pompa yang dipakai 15 jam, setelah 15 jam pompa akan switch ke pompa yang standbye jadi pompa yang dipakai hanya fokus ke pompa yang aktif.

Bisa asumsikan bahwa pompa aktual yang berada dilokasi Ciurug L.450 yang dipakai bisa dikurangi dan pompa bisa dialokasikan agar debit air yang masuk dan debit air yang keluar hasilnya sama atau lebih besar sedikit dari debit keluar, sehingga pompa yang digunakan sesuai dengan peruntukannya 15 jam jadi untuk pompa *standbye* tidak perlu ikut membantu pompa yang aktif, kecuali pompa aktif mengalami *breakdown*.

4. KESIMPULAN

Berdasarkan hasil perhitungan debit air dan kinerja pompa di Ciurug L.450. Debit air yang masuk dari lokasi Ramp Down A, bisa diatasi oleh sistem *dewatering* tetapi bisa dirubah dari sistem pengaturan pemompaan dari *standby* pompa. Untuk Ramp Down C pompa tidak mampu dikarenakan kapasitas pompa dengan debit air yang masuk hampir lebih besar menyamai debit air yang masuk sebesar 2,899 sedangkan debit air pompa keluar 2.840 m³/menit. Disarankan mengganti pompa yang diatas spesifikasi diatas Tsurumi LH 637. Terdapat beberapa pompa yang mengalami kavitasi pada pompa Tsurumi LH 875 dan Warman 4/3 EE-HH, kapaitas aktual *head* pompa terdapat 17 pompa yang *head* tidak sesuai dengan aktual sehingga daya kapasitas pompa bisa dikurangi. Hasil dari analisis, pompa bisa dikurangi dayanya sebesar 1061,5 Kw dari 1561.7 Kw, dari 24 pompa di Ciurug menjadi 19 pompa dengan adanya penambahan Pompa Tsurumi 7,5 Kw 2 unit pada lokasi *Mine Sump* 438 A.

UCAPAN TERIMAKASIH

Penelitian ini dapat berjalan dengan baik karena dukungan penuh dari Lembaga Penelitian, Pengabdian Kepada Masyarakat, dan Inovasi (LPPMI) Institut Teknologi Nasional Yogyakarta dan PT. Antam (persero) Tbk UPBE Pongkor yang telah menyediakan lokasi penelitian.

5. DAFTAR PUSTAKA

- [1] PT. Aneka Tambang, Tbk, Data Hidrogeologi PT Aneka Tambang Tbk Unit Bisnis Pertambangan Emas Pongkor, Bogor, Jawa barat. 2019
- [2] Adnyano, AAIA., Bagaskoro, M. Kajian Tekniks Dewatering System Tambang Pada Pertambangan Batubara, Jurnal Promine. 2020: Vol 8, No. 1, pp 28-33
- [3] Soematri, CD. Hidrologi Teknik (edisi perbaikan). Erlangga. Jakarta. 1999
- [4] Sularso dan Tahara, H. Pompa dan Kompresor. Pradnya Paramita. Jakarta. 2000
- [5] Putra, A.Y.U., Aryanto. Kajian Teknis Optimalisasi Pompa Pada Sistem Penyaliran Tambang Bawah Tanah di PT. Cibaliung Sumber Daya, Provinsi Banten. Prosiding Seminar Rekayasa Teknologi Industri dan Informasi ke 10, Yogyakarta. 2015. 215-225.

[krvtk] New notification from KURVATEK

Dari: Mutiasari Kurnia Devi (noreply@sttnas.ac.id)

Kepada: arie_adnyana@yahoo.com

Tanggal: Jumat, 11 Desember 2020 12.50 GMT+7

You have a new notification from KURVATEK:

An issue has been published.

Link: //journal.itny.ac.id/index.php/krvtk/issue/current

Ani Tjitra Handayani

_____ Kurvatek (e-ISSN 2477-

7870) http://journal.itny.ac.id/index.php/krvtk