eprintid: 5618 rev_number: 17 eprint_status: archive userid: 343 dir: disk0/00/00/56/18 datestamp: 2024-11-11 04:10:33 lastmod: 2024-11-11 04:10:33 status_changed: 2024-11-11 04:10:33 type: thesis metadata_visibility: show creators_name: JALADRI, GALAH contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_name: Kartikasari, Ratna contributors_name: Pitoyo, Joko title: Pengaruh waktu proses deep cryogenic treatment terhadap struktur mikro, keausan dan ketahanan korosi paduan Fe-Al-Mn-Mo ispublished: unpub subjects: TJ divisions: teknik_pertambangan keywords: Fe-Al-Mn-Mo Alloy, DCT, Microstructure, Wear, Corrosion Resistance = Paduan Fe-Al-Mn-Mo , DCT, Struktur Mikro, Keausan, Ketahanan Korosi abstract: The Fe-Al-Mn-Mo alloy is an alloy steel that is included in the stainless steel class which replaces the conventional stainless steel Fe-Cr-Ni alloy. The hardness of the Fe-Al-Mn-Mo alloy is still lacking because there is still a lot of ferrite structure, the Deep Cryogenic Treatment (DCT) process is carried out to increase the hardness. This study aims to study the effect of DCT processing time on the microstructure, wear and corrosion resistance of Fe-Al-Mn-Mo alloys. The process used was DCT by immersion in liquid nitrogen at a temperature (-196℃) with time variations of 1, 2, 3, 4, and 5 hours. Then return to room temperature. The results of the chemical composition test showed that the Fe-Al-Mn-Mo alloy had 76.52% Fe as the main element, 14.11% Mn as the main alloy, 10.62% Al and 0.45% Mo, while the Fe- Al-Mn-Mo is a high alloy steel. The results of the microstructure test showed that the Fe-Al-Mn-Mo alloy has a ferrite and austenite structure. The DCT process causes the ferrite structure to get bigger while the austenite structure gets smaller but the austenite grains will spread more and more between the ferrite grains. The Fe-Al-Mn-Mo alloy has a corrosion resistance value of 0.03 mpy and the highest value of corrosion resistance in the 5 hour DCT process is 0.0152 mpy. The Fe-Al-Mn-Mo alloy has a wear rate of 0.00032 mm³/kg.m and the lowest value in the 5 hour DCT process is 0.00011 mm³/kg.m = Paduan Fe-Al-Mn-Mo merupakan baja paduan yang termasuk dalam baja tahan karat yang menggantikan baja tahan karat konvensional paduan Fe-Cr-Ni. Kekerasan paduan Fe-AlMn-Mo masih kurang karena masih banyak struktur ferit, proses Deep Cryogenic Treatment (DCT) dilakukan untuk meningkatkan kekerasan. Penelitian ini bertujuan untuk mempelajari pengaruh waktu proses DCT terhadap struktur mikro, keausan, dan ketahanan korosi pada paduan Fe-Al-Mn-Mo. Proses yang dilakukan adalah DCT dengan cara perendaman dalam nitrogen cair pada suhu (-196℃) dengan variasi waktu 1, 2, 3, 4, dan 5 jam. Lalu dikembalikkan pada suhu ruangan. Hasil uji komposisi kimia menunjukkan paduan Fe-Al-Mn-Mo memiliki unsur utama Fe sebesar 76,52%, unsur paduan utama Mn sebesar 14,11%, Al sebesar 10,62% dan Mo sebesar 0,45% sedangkan paduan Fe-Al-Mn-Mo termasuk baja paduan tinggi. Hasil uji struktur mikro menunjukkan paduan Fe-Al-Mn-Mo memiliki struktur ferit dan austenite. Proses DCT menyebabkan struktur ferit semakin besar sedangkan struktur austenite semakin kecil namun butir austenite akan semakin menyebar di antara butir ferit. Paduan Fe-Al-Mn-Mo memiliki nilai ketahanan korosi sebesar 0,0300 mpy dan nilai tertinggi ketahanan korosi pada proses DCT 5 jam sebesar 0,0152 mpy. Paduan Fe-Al-Mn-Mo memiliki nilai laju keausan sebesar 0,00032 mm³/kg.m dan nilai terendah pada proses DCT 5 jam sebesar 0,00011 mm³/kg.m. date: 2022-11-28 date_type: completed full_text_status: restricted institution: Institut Teknologi Nasional Yogyakarta department: Fakultas Teknik dan Perencanaan : Teknik Mesin thesis_type: other thesis_name: other referencetext: ASM Handbook., 1990, Alloy Phase Diagram. ASM International Handbook Committee. Vol.3. Avner, S. H., 1984, Introduction to physical metallurgy. New York : McGraw-Hill international Book Company. Fontana, G.M., 1988, Corrosion Engineering, Ed.3, McGraw Hill, Singapore. Frommeyer, 2000, Physical and Mechanical Properties of Iron-Aluminium (Mn- Si) Lightweight Steels, The 1999 ATS International Steelmaking Conference, Paris. Sec.4. Gunawan , E., 2017, Pengaruh Temperatur Pada Proses Perlakuan Panas Baja Tahan Karat Martensitik AISI 431 Terhadap Laju korosi Dan Struktur Mikro. Teknika: Engineering and Sains Journal. Vol.1, No.1, Hal.55. Huang, B., Wang, X., Rong, Y., Wang, L., dan Jin, L., 2006, Materials Science and Engineering. Mechanical Behavior and Martensitic Transformation of Fe-Al-Si-Al-Nb Alloy. No. 438-440, Hal. 306-311. Idayan, A., Gnanavelbabu, A., dan Rajkumar, K 2014, A. Idayana, A.Gnanavelbabu, K. Rajkumar. 12th Global Congres On Manufacturing and Management Gemm. Jablonska, M., Jasik, A., dan Hanc, A., 2009, Structures and Phases transitions of The Alloys on the bases of Fe-Al Intermetallic Phases, International Scientific Journal Vol. 29. No. 1, Hal. 16-19. Kartikasari, R., 2009, Studi Pengaruh Temperatur Temper Terhadap Sifat Mekanik dan Ketahanan Korosi Paduan Fe-1,26Al-1,05C, Media Mesin, Vol. 10, No. 1, Hal. 22-19. Kartikasari, R., Sutrisna., Batseran, P.W., 2013, Struktur Mikro, Kekuatan Tarik Dan Ketahanan Korosi Paduan Fe-2,2Al-0,6C Setelah Proses Temper, Seminar Nasional ke-8 Tahun 2013 : Rekayasa Teknologi Industri dan Informasi. Kartikasari, R., dan Sutrisna, 2013, Pengaruh Temperatur Anil Terhadap Ketangguhan dan Ketahanan Korosi Kandidat Baja Ringan Paduan Fe-AlMn-Si, Rotasi, Vol. 15, Hal. 11-15. Kim, H., Suh, D-W., dan Kim, N.J., 2013, Fe–Al–Mn–C Lightweight Structural Alloys: A Review on the Microstructures and Mechanical Properties, Science and Technology of Advanced Materials, Vol. 14, Hal. 1-11. Kobayashi, S., Zaefferer, S., Schneider, A., Raabe, D., and Frommeyer, G., 2005, Optimisation of Precipitation for Controlling Recrystallization of Wrought Fe3Al Based Alloys, Intermetallics, Vol. 13, No. 12, Hal. 96-1303. Kubaschewski, O., 1982, Iron-Binary Phase Diagram, Springer, Berlin. Leslie, T., 1983, The Physical Metallurgi of Steels, John Willey and Sons Inc., New York. Liu, Z., Zhang, Q., Meng, F., dan Miao, Z., 2020, Research on Modification of Cryogenic Treatment on Austenitic Stainless Steel, IOP Conf. Series: Earth and Environmental Science, Vol. 512, No. 1, Hal 1-7. Lyszkowski, R., Bystrzycki, Jzy., 2014, Hot Deformation and Processing Maps of a Fe-Al Intermetalic Alloy, Material Characterization, No. 96, Hal. 196- 205. Mabruri, E., Anwar, M.S., Prifiharni, S., Romijarso, T.B., dan Adjiantoro, B., 2015, Pengaruh Mo dan Ni Terhadap Struktur Mikro dan Kekerasan Baja Tahan Karat Martensik 13Cr, Majalah Metalurgi, Vol. 3, Hal. 133-140. Nadig, D. S., Bhat, M.R., K, P.V., dan Mahishi, C., 2017, Effects of Cryogenic Treatment on the Strength Properties of Heat Resistant Stainless Steel (07X16H6), IOP Conf. Series: Materials Science and Engineering, Vol. 229, Hal. 1-5. Ragavan, V., 2005, Fe-Al-Mn, Journal Of Phase Equilibria and Diffusion. Shackelford, J.F., 1992, Introduction to Material Science for Engineers, 3t ed.,. Smallman, R.E., dan Bishop, R.j., 2000, “Metalurgi Fisik Modern dan Rekayasa Material”, Erlangga, jakarta. Surdia, T, dan Saito, S., 1999, Pengetahuan Bahan Teknik, PT. Pradnya Paramita, Cetakan Keempat, Jakarta. ternary systems and interfacial reactions in Fe–Cr alloys with Ni substrate. Tjong, S.C., 1986, Stress Corrosion Cracking behavior of the duplex Fe-10Al29Mn-0,4C alloy in 20% NaCl solution at 100˚C, Journal of Material Science, Vol. 21, Hal. 1166-1170. Van Vlack, L.H., 1992, “Ilmu dan Teknologi Bahan”, Edisi Kelima Erlangga, jakarta. Wang, C. J., dan Duh, J. G., 1988, Nitriding in the high temperature oxidation of Fe-31Mn-9Al-6Cr alloy, Journal of Materials science, Vol. 23, Hal. 769- 775. Yen, W.T., Su, J.W., Huang, D.P., 2007, Phase equilibria of the Fe–Cr–Ni Ni ternary systems and interfacial reactions in Fe–Cr alloys with Ni substrate, Journal of Alloys and Compounds, Vol. 457, No. 1-2, Hal. 270– 278. Zambrano, O. A., 2018, A General Perspective of Fe-Mn-Al-C Steels. Journal of materials science, Vol. 53, No. 20. citation: JALADRI, GALAH (2022) Pengaruh waktu proses deep cryogenic treatment terhadap struktur mikro, keausan dan ketahanan korosi paduan Fe-Al-Mn-Mo. Other thesis, Institut Teknologi Nasional Yogyakarta. document_url: https://repository.itny.ac.id/id/eprint/5618/1/cover-galah%20jld_merged.pdf document_url: https://repository.itny.ac.id/id/eprint/5618/2/BAB%201%20-%20GALAH.pdf document_url: https://repository.itny.ac.id/id/eprint/5618/3/BAB%202-GALAH.pdf document_url: https://repository.itny.ac.id/id/eprint/5618/4/BAB%203-%20GALAH.pdf document_url: https://repository.itny.ac.id/id/eprint/5618/5/BAB%204%20-%20GALAH.pdf document_url: https://repository.itny.ac.id/id/eprint/5618/6/BAB%205%20-%20GALAH.pdf document_url: https://repository.itny.ac.id/id/eprint/5618/7/PPT%20Skripsi%20Galah%201.pdf document_url: https://repository.itny.ac.id/id/eprint/5618/8/jurnal%20skripsi%20galah.pdf document_url: https://repository.itny.ac.id/id/eprint/5618/9/DAFTAR%20PUSTAKA%20GALAH.pdf document_url: https://repository.itny.ac.id/id/eprint/5618/10/LAMPIRAN%20GALAH.pdf