eprintid: 5101 rev_number: 7 eprint_status: archive userid: 15 dir: disk0/00/00/51/01 datestamp: 2024-09-10 07:29:38 lastmod: 2024-09-10 07:29:38 status_changed: 2024-09-10 07:29:38 type: article metadata_visibility: show creators_name: ., Chun-LiangChen creators_name: ., Sutrisna title: Study of W-Co ODS coating on stainless steels by mechanical alloying ispublished: pub subjects: TJ divisions: Teknik_Mesin keywords: WC-Co coating Mechanical alloying Dispersion strengthening Wear resistance abstract: Tungsten-based coatings have attracted considerable interest in recent years for industrial applications because of superior wear resistance. In this study, the W-Co oxide dispersion strengthened (ODS) coating on stainless steels by mechanical alloying (MA) has been investigated. The different reinforced particles (Y2O3, TiC) have been introduced to the W-Co coating layer as dispersion strengthening during mechanical alloying. The results showed that the formation of the (W,Co)C, Co7W6 and Co3W phases was generated after a long milling duration. The use of Y2O3 dispersed particles in the coating layer demonstrated homogenous distribution of microstructure and an increase of mechanical properties. However, the coating with TiC reinforcement has a significant change in distribution of the microstructure and composition and formed voids or micro-cracks, which decrease densification and hardness of the coating materials. The W-Co ODS coating by mechanical alloying is one of the most promising coating methods for enhanced wear resistance on stainless steels. date: 2018-03-17 date_type: published publisher: Elsevier full_text_status: public publication: Surface & Coatings Technology refereed: FALSE referencetext: [1] A. Krella, A. Czyzniewski, Cavitation resistance of Cr-N coatings deposited on austenitic stainless steel at various temperatures, Wear 266 (2009) 800–809, http:// dx.doi.org/10.1016/j.wear.2008.11.002. [2] P. Norajitra, L.V. Boccaccini, E. Diegele, V. Filatov, A. Gervash, R. Giniyatulin, S. Gordeev, V. Heinzel, G. Janeschitz, J. Konys, W. Krauss, R. Kruessmann, S. Malang, I. Mazul, A. Moeslang, C. Petersen, G. Reimann, M. Rieth, G. Rizzi, M. Rumyantsev, R. Ruprecht, V. Slobodtchouk, Development of a helium-cooled divertor concept: design-related requirements on materials and fabrication technology, J. Nucl. Mater. 329–333 ( (2004) 1594–1598, http://dx.doi.org/10.1016/j. jnucmat.2004.04.137. [3] C.L. Chen, Y. Zeng, Synthesis and characteristics of W-Ti alloy dispersed with Y2Ti2O7 oxides, Int. J. Refract. Met. Hard Mater. 56 (2016) 104–109, http://dx. doi.org/10.1016/j.ijrmhm.2015.12.008. [4] S. Wurster, N. Baluc, M. Battabyal, T. Crosby, J. Du, C. García-Rosales, A. Hasegawa, A. Hoffmann, A. Kimura, H. Kurishita, R.J. Kurtz, H. Li, S. Noh, J. Reiser, J. Riesch, M. Rieth, W. Setyawan, M. Walter, J.H. You, R. Pippan, Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials, J. Nucl. Mater. 442 (2013) 181–189, http://dx.doi.org/10.1016/j.jnucmat. 2013.02.074. [5] M. Rieth, S.L. Dudarev, S.M. Gonzalez De Vicente, et al., Recent progress in research on tungsten materials for nuclear fusion applications in Europe, J. Nucl. Mater. 432 (2013) 482–500, http://dx.doi.org/10.1016/j.jnucmat.2012.08.018. [6] C. Suryanarayana, N. Al-Aqeeli, Mechanically alloyed nanocomposites, Prog. Mater. Sci. 58 (2013) 383–502, http://dx.doi.org/10.1016/j.pmatsci.2012.10.001. [7] J.M. Marshall, M. Giraudel, The role of tungsten in the Co binder: effects on WC grain size and hcp-fcc Co in the binder phase, Int. J. Refract. Met. Hard Mater. 49 (2015) 57–66, http://dx.doi.org/10.1016/j.ijrmhm.2014.09.028. [8] L.M. Luo, X.Y. Tan, H.Y. Chen, G.N. Luo, X.Y. Zhu, J.G. Cheng, Y.C. Wu, Preparation and characteristics of W-1wt.% TiC alloy via a novel chemical method and spark plasma sintering, Powder Technol. 273 (2015) 8–12, http://dx.doi.org/10.1016/j. powtec.2014.12.033. [9] H. Myalska, R. Swadźba, R. Rozmus, G. Moskal, J. Wiedermann, K. Szymański, STEM analysis of WC-Co coatings modified by nano-sized TiC and nano-sized WC addition, Surf. Coat. Technol. 318 (2017) 279–287, http://dx.doi.org/10.1016/j. surfcoat.2017.01.072. [10] C. Suryanarayana, E. Ivanov, V.V. Boldyrev, The science and technology of mechanical alloying, Mater. Sci. Eng. A 304–306 (2001) 151–158, http://dx.doi.org/ 10.1016/S0921-5093(00)01465-9. [11] C.L. Chen, Y. Zeng, Influence of Ti content on synthesis and characteristics of W-Ti ODS alloy, J. Nucl. Mater. 469 (2016) 1–8, http://dx.doi.org/10.1016/j.jnucmat. 2015.11.018. [12] C.L. Chen, C.L. Huang, The effects of alloying and milling on the formation of intermetallics in ODS tungsten heavy alloys, Intermetallics 41 (2013) 10–15, http:// dx.doi.org/10.1016/j.intermet.2013.04.014. [13] A. Canakci, F. Erdemir, T. Varol, R. Dalmiş, S. Ozkaya, Effects of a new pre-milling coating process on the formation and properties of an Fe-Al intermetallic coating, Powder Technol. 268 (2014) 110–117, http://dx.doi.org/10.1016/j.powtec.2014. 08.034. [14] I. Wesemann, W. Spielmann, P. Heel, A. Hoffmann, Fracture strength and microstructure of ODS tungsten alloys, Int. J. Refract. Met. Hard Mater. 28 (2010) 687–691, http://dx.doi.org/10.1016/j.ijrmhm.2010.05.009. [15] Y. Lu, S. Guan, L. Hao, H. Yoshida, Review on the Photocatalyst coatings of TiO2: fabrication by mechanical coating technique and its application, CoatingsTech 5 (2015) 425–464, http://dx.doi.org/10.3390/coatings5030425. [16] H. Yoshida, Y. Lu, H. Nakayama, M. Hirohashi, Fabrication of TiO2 film by mechanical coating technique and its photocatalytic activity, J. Alloys Compd. 475 (2009) 383–386, http://dx.doi.org/10.1016/j.jallcom.2008.07.059. [17] D. Jeyasimman, S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, R.S. Kambali, An investigation of the synthesis, consolidation and mechanical behaviour of Al 6061 nanocomposites reinforced by TiC via mechanical alloying, Mater. Des. 57 (2014) 394–404, http://dx.doi.org/10.1016/j.matdes.2013.12.067. citation: ., Chun-LiangChen and ., Sutrisna (2018) Study of W-Co ODS coating on stainless steels by mechanical alloying. Surface & Coatings Technology. document_url: https://repository.itny.ac.id/id/eprint/5101/1/Study%20of%20W-Co.pdf