eprintid: 5100 rev_number: 7 eprint_status: archive userid: 15 dir: disk0/00/00/51/00 datestamp: 2024-09-10 07:32:47 lastmod: 2024-09-10 07:32:47 status_changed: 2024-09-10 07:32:47 type: article metadata_visibility: show creators_name: ., Chun-Liang Chen creators_name: ., Sutrisna creators_id: chunliang@gms.ndhu.edu.tw title: Study of NiFeCoCr medium entropy alloy as a binder phase on W–Mo heavy tungsten alloy by secondary ball milling ispublished: pub subjects: TJ divisions: Teknik_Mesin keywords: High entropy alloys Heavy tungsten alloys Mechanical alloying Secondary ball milling abstract: The binder phase of NiFeCoCr medium entropy alloy (MEA) dispersed in W–Mo heavy tungsten alloy synthesized by secondary ball milling was studied. The results show that the MEA binder phase with a single FCC solid solution structure was obtained after the pre-milling process. A considerable reduction of Cr content in the MEA binder phase encourages the dissolution of Cr into the tungsten matrix and forms the Cr-rich oxides after the sintering process. TEM investigations show that the Cr-rich oxide has been indexed as the (Cr, Fe)O3 and the twinned structure was observed in the FCC MEA binder phase. Besides, as the sintering temperature was increased to 1450 ◦C, liquid phase sintering is dominant in the model alloys, leading to a decrease in the hardness of the model alloys. date: 2021-08-18 date_type: published publisher: Elsevier full_text_status: public publication: Intermetallics refereed: FALSE referencetext: [1] Y. S¸ ahin, Recent progress in processing of tungsten heavy alloys, J. Powder Technol. 2014 (2014), https://doi.org/10.1155/2014/764306. [2] O. Dinçer, M.K. Pehlivanoʇlu, N.K. Çalis¸kan, I. Karakaya, A. Kalkanli, Processing and microstructural characterization of liquid phase sintered tungsten-nickelcobalt heavy alloys, Int. J. Refract. Metals Hard Mater. 50 (2015) 106–112, https:// doi.org/10.1016/j.ijrmhm.2014.12.009. [3] K.H. Lee, S.I. Cha, H.J. Ryu, S.H. Hong, Effect of two-stage sintering process on microstructure and mechanical properties of ODS tungsten heavy alloy, Mater. Sci. Eng. 458 (2007) 323–329, https://doi.org/10.1016/j.msea.2007.01.118. [4] A. Arora, V. Gopal Rao, Tungsten heavy alloy for defence applications, Mater. Technol. 19 (2004) 210–215, https://doi.org/10.1080/10667857.2004.11753087. [5] A. Upadhyaya, S.K. Tiwari, P. Mishra, Microwave sintering of W-Ni-Fe alloy, Scripta Mater. 56 (2007) 5–8, https://doi.org/10.1016/j.scriptamat.2006.09.010. [6] P. Lu, R.M. German, Multiple grain growth events in liquid phase sintering, J. Mater. Sci. 36 (2001) 3385–3394, https://doi.org/10.1023/A:1017943524875. [7] R.M. German, K.S. Churn, Sintering atmosphere effects on the ductility of W-Ni-Fe, Heavy Metals 15 (1984) 94–95. [8] C.L. Chen, S.H. Ma, Study on characteristics and sintering behavior of W-Ni-Co tungsten heavy alloy by a secondary ball milling method, J. Alloys Compd. 731 (2018) 78–83, https://doi.org/10.1016/j.jallcom.2017.09.125. [9] N. Lin, C.H. Wu, Y.H. He, D.F. Zhang, Effect of Mo and Co additions on the microstructure and properties of WC-TiC-Ni cemented carbides, Int. J. Refract. Metals Hard Mater. 30 (2012) 107–113, https://doi.org/10.1016/j. ijrmhm.2011.07.011. [10] G. Zhang, W. Xiong, Q. Yang, Z. Yao, S. Chen, X. Chen, Effect of Mo addition on microstructure and mechanical properties of (Ti,W)C solid solution based cermets, Int. J. Refract. Metals Hard Mater. 43 (2014) 77–82, https://doi.org/10.1016/j. ijrmhm.2013.11.004. [11] Z. Zhao, J. Liu, H. Tang, X. Ma, W. Zhao, Effect of Mo addition on the microstructure and properties of WC e Ni e Fe hard alloys, J. Alloys Compd. 646 (2015) 155–160, https://doi.org/10.1016/j.jallcom.2015.05.277. [12] C.L. Chen, C.L. Huang, Y. Zeng, Synthesis of ODS heavy tungsten alloys through post-annealing and secondary ball milling, Int. J. Refract. Metals Hard Mater. 48 (2017) 359–364, https://doi.org/10.1016/j.ijrmhm.2014.10.008. [13] Z.A. Hamid, S.F. Moustafa, W.M. Daoush, F.A. Mouez, M. Hassan, Fabrication and characterization of tungsten heavy alloys using chemical reduction and mechanical alloying methods, Open J. Appl. Sci. 3 (2013) 15–27, https://doi.org/10.4236/ ojapps.2013.31003. [14] C.L. Che, Sutrisna, the effect of mo and dispersoids on microstructure, sintering behavior, and mechanical properties of W-Mo-Ni-Fe-Co heavy tungsten alloys, Metals 9 (2019) 1–11, https://doi.org/10.3390/met9020111. [15] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci. 61 (2014) 1–93, https://doi.org/10.1016/j.pmatsci.2013.10.001. [16] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299–303+274, https:// doi.org/10.1002/adem.200300567. [17] R. Rudolf, The Advantages of Modified Air Plasma Jet Method in the Process of Deposition of Hydroxyapatite Coatings on the Titanium Surface 56, 2015, pp. 3–8, https://doi.org/10.5937/ZasMat1502123J. [18] B. Jia, X.J. Liu, H. Wang, Y. Wu, Z.P. Lu, Microstructure and mechanical properties of FeCoNiCr high-entropy alloy strengthened by nano-Y2O3 dispersion, Sci. China Technol. Sci. 61 (2018) 179–183, https://doi.org/10.1007/s11431-017-9115-5. [19] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi highentropy alloy, Acta Mater. 61 (2013) 5743–5755, https://doi.org/10.1016/j. actamat.2013.06.018. [20] W. Ji, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, Z. Fu, Alloying behavior, and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering, Intermetallics 56 (2015) 24–27, https://doi. org/10.1016/j.intermet.2014.08.008. [21] Y. Liu, J. Wang, Q. Fang, B. Liu, Y. Wu, S. Chen, Preparation of superfine-grained high entropy alloy by spark plasma sintering gas atomized powder, Intermetallics 68 (2016) 16–22, https://doi.org/10.1016/j.intermet.2015.08.012. [22] P.V. Satyanarayana, R. Sokkalingam, P.K. Jena, K. Sivaprasad, K.G. Prashanth, Tungsten matrix composite reinforced with CoCrFeMnNi high-entropy alloy: impact of processing routes on microstructure and mechanical properties, Metals 9 (2019) 992, https://doi.org/10.3390/met9090992. [23] J.Y. Huang, Y.D. Yu, Y.K. Wu, D.X. Li, H.Q. Ye, Microstructure and nanoscale composition analysis of the mechanical alloying of Fe x Cu 100-x (X= 16, 60), Acta Mater. 45 (1997) 113–124, https://doi.org/10.1016/S1359-6454(96)00163-2. [24] C. Suryanarayana, E. Ivanov, V.V. Boldyrev, The science and technology of mechanical alloying, Mater. Sci. Eng. 304–306 (2001) 151–158, https://doi.org/ 10.1016/S0921-5093(00)01465-9. [25] C.L. Chen, Suprianto, Effects of nano-dispersoids on synthesis and characterization of low Cr containing CoNiFeMnCr high entropy alloy by mechanical alloying, Intermetallics 113 (2019), 106570, https://doi.org/10.1016/j. intermet.2019.106570. [26] C.L. Chen, S.H. Ma, Effects of Ni/Co ratio and mechanical alloying on characteristics and sintering behavior of W-Ni-Co tungsten heavy alloys, J. Alloys Compd. 711 (2017) 488–494, https://doi.org/10.1016/j.jallcom.2017.04.037. [27] Y.J. Xu, K. Du, C.Y. Cui, H.Q. Ye, Deformation twinning with zero macroscopic strain in a coarse-grained Ni-Co-based superalloy, Scripta Mater. 77 (2014) 71–74, https://doi.org/10.1016/j.scriptamat.2014.01.030. citation: ., Chun-Liang Chen and ., Sutrisna (2021) Study of NiFeCoCr medium entropy alloy as a binder phase on W–Mo heavy tungsten alloy by secondary ball milling. Intermetallics. document_url: https://repository.itny.ac.id/id/eprint/5100/1/Study%20of%20FeNiCoCr.pdf