eprintid: 5098 rev_number: 7 eprint_status: archive userid: 15 dir: disk0/00/00/50/98 datestamp: 2024-09-10 07:34:20 lastmod: 2024-09-10 07:34:20 status_changed: 2024-09-10 07:34:20 type: article metadata_visibility: show creators_name: ., Chun‑Liang Chen creators_name: ., · Sutrisna title: Role of Cu‑Containing MEA Binder and Sintering Temperatures on Synthesis and Characteristics of Tungsten‑Based Alloys ispublished: pub subjects: TJ divisions: Teknik_Mesin keywords: High entropy alloy · Tungsten alloy · Mechanical alloying · Sintering behavior abstract: Tungsten-based alloys doped with the 10 wt% FeCoNiCu medium entropy alloy (MEA) binder were fabricated by mechanical alloying. The role of the Cu-containing MEA binder and sintering temperatures (1250–1450℃) on the synthesis, sintering behavior, and mechanical properties of the model tungsten alloys were investigated. The results demonstrate that the solid-to-liquid phase transition during sintering was strongly infuenced by the presence of Cu in the binder and sintering temperatures. A good combination of high compressive strength (2080 MPa), failure strain (42%), and hardness (419 HV) was achieved at the low sintering temperature (1250 ℃), which promoted a fned grain structure with semisolid state sintering. However, Fe-rich oxide layers were formed along the grain boundaries at the high sintering temperature (1450 ℃) and caused a poor bonding strength between the binder phase and W matrix, thereby resulting in signifcant degradation of mechanical properties date: 2022-11-22 date_type: published publisher: Springer full_text_status: public publication: Metals and Materials International refereed: FALSE referencetext: 1. A. Arora, V.G. Rao, Mater. Technol. 19, 210 (2004). https://doi. org/10.1080/10667857.2004.11753087 2. O. Dinçer, M.K. Pehlivanoʇlu, N.K. Çalis¸kan, I. Karakaya, A. Kalkanli, Int. J. Refract. Met. Hard Mater. 50, 106 (2015). https://doi.org/10.1016/j.ijrmhm.2014.12.009 3. Y. Sahin, J. Powder Technol. 2014, 764306 (2014). https://doi. org/10.1155/2014/764306 4. K.H. Lee, S.I. Cha, H.J. Ryu, S.H. Hong, Mater. Sci. Eng. A 458, 323 (2007). https://doi.org/10.1016/j.msea.2007.01.118 5. A. Upadhyaya, S.K. Tiwari, P. Mishra, Scripta Mater. 56, 5 (2007). https://doi.org/10.1016/j.scriptamat.2006.09.010 6. A. Bose, R.M. German, Metall. Trans. A 19, 3100 (1988). https://doi.org/10.1007/BF02647738 7. P.B. Kemp, R.M. German, Metall. Mater. Trans. A 26, 2187 (1995). https://doi.org/10.1007/BF02670690 8. C.L. Chen, Sutrisna, Metals 9, 111 (2019). https://doi.org/10. 3390/met9020111 9. Z.A. Hamid, S.F. Moustafa, W.M. Daoush, F.A. Mouez, M. Hassan, Open J. Appl. Sci. 3, 15 (2013). https://doi.org/10.4236/ojapps.2013.31003 10. H.J. Ryu, S.H. Hong, Mater. Sci. Eng. A 363, 179 (2003). https://doi.org/10.1016/S0921-5093(03)00641-5 11. Y.B. Zhu, Y. Wang, X.Y. Zhang, G.W. Qin, Int. J. Refract. Met. Hard Mater. 25, 275 (2007). https://doi.org/10.1016/j.ijrmhm. 2006.08.003 12. C.-L. Chen, S.-H. Ma, J. Alloy. Compd. 731, 78 (2018). https:// doi.org/10.1016/j.jallcom.2017.09.125 13. A.R. Annamalai, J.K. Chaurasia, M. Srikanth, D.K. Agrawal, C.-P. Jen, Mater. Res. Express 7, 126503 (2020). https://doi.org/ 10.1088/2053-1591/abccf7 14. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004). https:// doi.org/10.1002/adem.200300567 15. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater Sci. 61, 1 (2014). https://doi.org/10.1016/j. pmatsci.2013.10.001 16. H. Ma, Y. Shao, C.H. Shek, Int. J. Refract. Metal Hard Mater. 98, 105572 (2021). https://doi.org/10.1016/j.ijrmhm.2021.105572 17. P.V. Satyanarayana, R. Sokkalingam, P.K. Jena, K. Sivaprasad, K.G. Prashanth, Metals 9, 992 (2019). https://doi.org/10.3390/ met9090992 18. C.-L. Chen, Sutrisna, Intermetallics 138, 107320 (2021). https:// doi.org/10.1016/j.intermet.2021.107320 19. A. Panigrahi, T.S. Acharya, P. Sengupta, D. Kumar, L. Sarangi, N. Kumar, D. Debasish, S. Suwas, S. Basu, M. Debata, Mater. Sci. Eng. A 832, 142451 (2022). https://doi.org/10.1016/j.msea.2021. 142451 20. J.I. Hyun, K.H. Kong, K.C. Kim, W.T. Kim, D.H. Kim, Appl. Microsc. 45, 9 (2015). https://doi.org/10.9729/am.2015.45.1.9 21. X. Sun, H. Zhu, J. Li, J. Huang, Z. Xie, Mater. Chem. Phys. 220, 449 (2018). https://doi.org/10.1016/j.matchemphys.2018.09.022 22. Y. Li, J. Zhang, G. Luo, Y. Sun, Q. Shen, L. Zhang, J. Mater. Res. Technol. 10, 121 (2021). https://doi.org/10.1016/j.jmrt.2020.12. 013 23. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61, 5743 (2013). https://doi.org/10.1016/j.actamat. 2013.06.018 24. R.E. Kubilay, W.A. Curtin, Acta Mater. 216, 117119 (2021). https://doi.org/10.1016/j.actamat.2021.117119 25. W. Wu, M. Song, S. Ni, J. Wang, Y. Liu, B. Liu, X. Liao, Sci. Rep. 7, 46720 (2017). https://doi.org/10.1038/srep46720 26. C. Suryanarayana, E. Ivanov, V.V. Boldyrev, Mater. Sci. Eng. 304– 306, 151 (2001). https://doi.org/10.1016/S0921-5093(00)01465-9 27. Y. Yu, C. Ren, W. Zhang, Int. J. Refract. Met. Hard Mater. 76, 149 (2018). https://doi.org/10.1016/j.ijrmhm.2018.06.006 28. K. Hu, X. Li, M. Guan, S.G. Qu, X.Y. Yang, J.X. Zhang, Int. J. Refract. Met. Hard Mater. 58, 117 (2016). https://doi.org/10. 1016/j.ijrmhm.2016.04.010 29. F. Xiao, T. Barriere, G. Cheng, Q. Miao, S. Zuo, S. Wei, L. Xu, J. Alloy. Compd. 878, 160335 (2021). https://doi.org/10.1016/j. jallcom.2021.160335 30. M. Guo, K. Liu, J. Sun, D. Gu, Mater. Sci. Eng A 843, 143096 (2022). https://doi.org/10.1016/j.msea.2022.143096 31. R.E. Kubilay, W.A. Curtin, Acta Mater. 216, 117119 (2021). https://doi.org/10.1016/j.actamat.2021.117119 32. S.-H. Joo, H. Kato, M.J. Jang, J. Moon, C.W. Tsai, J.W. Yeh, H.S. Kim, Mater. Sci. Eng. A 689, 122 (2017). https://doi.org/10. 1016/j.msea.2017.02.043 Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional afliations. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. citation: ., Chun‑Liang Chen and ., · Sutrisna (2022) Role of Cu‑Containing MEA Binder and Sintering Temperatures on Synthesis and Characteristics of Tungsten‑Based Alloys. Metals and Materials International. document_url: https://repository.itny.ac.id/id/eprint/5098/1/Role%20of.pdf