eprintid: 5094 rev_number: 7 eprint_status: archive userid: 15 dir: disk0/00/00/50/94 datestamp: 2024-09-10 07:35:51 lastmod: 2024-09-10 07:35:51 status_changed: 2024-09-10 07:35:51 type: article metadata_visibility: show creators_name: ., Chun-Liang Chen creators_name: ., Sutrisna title: Development of ODS tungsten heavy alloys reinforced with Co9Al8W superalloy binder by mechanical alloying ispublished: pub subjects: TJ divisions: Teknik_Mesin keywords: Co-Al-W superalloy Binder phase Heavy tungsten alloys Mechanical alloying abstract: In the present study, the Co9Al8W superalloy was used as a binder phase for a new tungsten heavy alloy (WHA). The effects of the binder phase, nano-Y2O3 oxides, and mechanical alloying on the microstructure evolution and mechanical properties of the model WHAs were investigated. The results demonstrate that the presence of the Co9Al8W binder phase can stabilize the formation of solid phase during sintering. The dispersed oxide particles can interact with the Al element and form complex nanoscale Al-Y-O oxides, which greatly refine the microstructure, resulting in a significant impact on mechanical properties of the alloys. However, the porous microstructure related to Al-rich oxides and pores was obtained in the alloys, which caused the formation of micro-cracks, resulting in the loss of material ductility. date: 2022-01-15 date_type: published publisher: Elsevier full_text_status: public publication: Journal of Alloys and Compounds refereed: FALSE referencetext: [1] O. Dinçer, M.K. Pehlivanoʇlu, N.K. Çalişkan, I. Karakaya, A. Kalkanli, Processing and microstructural characterization of liquid phase sintered tungsten-nickelcobalt heavy alloys, Int. J. Refract. Met. Hard Mater. 50 (2015) 106–112, https:// doi.org/10.1016/j.ijrmhm.2014.12.009 [2] Y. Şahin, Recent progress in processing of tungsten heavy alloys, J. Powder Technol. 2014 (2014) 764306–764322, https://doi.org/10.1155/2014/764306 [3] A. Arora, V.Gopal Rao, Tungsten heavy alloy for defence applications, Mater. Technol. 19 (2004) 210–215, https://doi.org/10.1080/10667857.2004.11753087 [4] R.M. German, K.S. Churn, Sintering atmosphere effects on the ductility sintering atmosphere effects on the ductility of W-Ni-Fe heavy metals, Metall. Trans. A 15 (1984) 747–754, https://doi.org/10.1007/BF02644206 Fig. 13. (a) Engineering stress-strain curve and (b) fracture surface of the WMo-B-YO sample at room temperature by compression test. C.-L. Chen and Sutrisna Journal of Alloys and Compounds 903 (2022) 163762 8 [5] K.H. Lee, S.I. Cha, H.J. Ryu, S.H. Hong, Effect of two-stage sintering process on microstructure and mechanical properties of ODS tungsten heavy alloy, Mater. Sci. Eng. A 458 (2007) 323–329, https://doi.org/10.1016/j.msea.2007.01.118 [6] A. Upadhyaya, S.K. Tiwari, P. Mishra, Microwave sintering of W-Ni-Fe alloy, Scr. Mater. 56 (2007) 5–8, https://doi.org/10.1016/j.scriptamat.2006.09.010 [7] W.S. Lee, S.T. Chiou, The influence of loading rate on shear deformation behaviour of tungsten composite, Compos. Part B Eng. 27 (1996) 193–200, https://doi. org/10.1016/1359-8368(95)00051-8 [8] L. Zhang, X. Qu, X. He, R.U. Din, H. Liu, M. Qin, H. Zhu, Microstructural characterization of co-based ODS alloys, J. Mater. Eng. Perform. 21 (2012) 2487–2494, https://doi.org/10.1007/s11665-012-0206-3 [9] P.V. Satyanarayana, R. Sokkalingam, P.K. Jena, K. Sivaprasad, K.G. Prashanth, Tungsten matrix composite reinforced with CoCrFeMnNi high-entropy alloy: impact of processing routes on microstructure and mechanical properties, Metals 9 (2019) 992, https://doi.org/10.3390/met9090992 [10] C.-L. Chen, Sutrisna, Study of NiFeCoCr medium entropy alloy as a binder phase on W–Mo heavy tungsten alloy by secondary ball milling, Intermetallics 138 (2021) 107320, https://doi.org/10.1016/j.intermet.2021.107320 [11] M. Cartón-Cordero, B. Srinivasarao, M. Campos, A. García-Junceda, J.M. Torralba, On the role of processing parameters in sintered new Co-based (W,Al) alloys, J. Alloy. Compd. 674 (2016) 406–412, https://doi.org/10.1016/j.jallcom.2016.03.077 [12] H.-Y. Yan, V.A. Vorontsov, D. Dye, Alloying effects in polycrystalline r′ strengthened Co-Al-W base alloys, Intermetallics 48 (2014) 44–53, https://doi.org/10. 1016/j.intermet.2013.10.022 [13] J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Karinuma, K. Ishida, Cobalt-base hightemperature alloys, Science 312 (2006) 90–91, https://doi.org/10.1126/science.1121738 [14] C.-L. Chen, Sutrisna, The effect of Mo and dispersoids on microstructure, sintering behavior, and mechanical properties of W-Mo-Ni-Fe-Co heavy tungsten alloys, Metals 9 (2019) 111–8331, https://doi.org/10.3390/met9020111 [15] H. Okamoto, M.E. Schlesinger, E.M. Mueller, Alloy phase diagrams, ASM HANDBOOK, ASM Int. 3 (2016) ISBN electronic: 978-1-62708-163-4. [16] C.L. Chen, Suprianto, Influence of Ta and Y2O3 on synthesis, phase evolution and mechanical properties of Co-Al-W based alloys, J. Alloy. Compd. 791 (2019) 567–574, https://doi.org/10.1016/j.jallcom.2019.03.262 [17] C. Suryanarayana, E. Ivanov, V.V. Boldyrev, The science and technology of mechanical alloying, Mater. Sci. Eng. 304-306 (2001) 151–158, https://doi.org/10. 1016/S0921-5093(00)01465-9 [18] C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci. 46 (2001) 1–184, https://doi.org/10.1016/S0079-6425(99)00010-9 [19] C.S. Hsu, S.T. Lin, Effect of molybdenum on grain growth of W-Mo-Ni-Fe heavy alloys, J. Mater. Sci. 38 (2003) 1543–1549, https://doi.org/10.1023/ A:1022941119017 [20] C.-L. Chen, Sutrisna, Study of NiFeCoCr medium entropy alloy as a binder phase on W–Mo heavy tungsten alloy by secondary ball milling, Intermetallics 138 (2021) 107320, https://doi.org/10.1016/j.intermet.2021.107320 [21] A. Suzuki, H. Inui, T.M. Pollock, L12-strengthened cobalt-base superalloys, Annu. Rev. Mater. Res. 45 (2015) 345–368, https://doi.org/10.1146/annurev-matsci070214-021043 [22] C.H. Zhang, A. Kimur, R. Kasada, J. Jang, H. Kishimoto, Y.T. Yang, Characterization of the oxide particles in Al-added high-Cr ODS ferritic steels, J. Nucl. Mater. 417 (2011) 221–224, https://doi.org/10.1016/j.jnucmat.2010.12.063 [23] C.L. Chen, G.J. Tatlock, A.R. Jones, Effect of annealing temperatures on the secondary re-crystallization of extruded PM2000 steel bar, J. Microsc. 233 (2009) 474–481, https://doi.org/10.1111/j.1365-2818.2009.03134.x [24] G.M. Pharr, E. Herbert, Y. Gao, The indentation size effect: a critical examination of experimental observations and mechanistic interpretations, Annu. Rev. Mater. Res. 40 (2010) 271–292 doi:10.1146/annurev-matsci-070909-104456. ISSN 1531- 7331. [25] Y. Yu, C. Ren, W. Zhang, Compressive behavior of liquid phase sintered 90W–7Ni3Fe heavy alloy at high temperature and low strain rate condition, Int. J. Refract. Met. Hard Mater. 76 (2018) 149–157, https://doi.org/10.1016/j.ijrmhm.2018.06. 006 citation: ., Chun-Liang Chen and ., Sutrisna (2022) Development of ODS tungsten heavy alloys reinforced with Co9Al8W superalloy binder by mechanical alloying. Journal of Alloys and Compounds. document_url: https://repository.itny.ac.id/id/eprint/5094/1/Development..pdf