eprintid: 3009 rev_number: 7 eprint_status: archive userid: 15 dir: disk0/00/00/30/09 datestamp: 2021-09-09 05:25:43 lastmod: 2022-09-28 05:01:01 status_changed: 2021-09-09 05:25:43 type: article metadata_visibility: show creators_name: Chun‐Liang, Chen creators_name: ., Sutrisna creators_id: . creators_id: . title: Influence of V and Heat Treatment on Characteristics of WMoNbTaV Refractory High‐Entropy Alloy Coatings by Mechanical Alloying ispublished: pub subjects: TJ divisions: sch_bio keywords: . Pan, J.; Dai, T.; Lu, T.; Ni, X.; Dai, J.; Li, M. Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering. Mater. Sci. Eng. A 2018, 738, 362–366. 33. Suryanarayan, C. Mechanical alloying and milling. Prog. Mater. Sci. 2001, 46, 1–184. 34. Kilmametov, A.; Kulagin, R.; Mazilkin, A.; Seils, S.; Boll, T.; Heilmaier, M.; Hahn, H. High‐pressure torsion driven mechanical alloying of CoCrFeMnNi high entropy alloy. Scr. Mater. 2019, 158, 29–33. 35. Olier, P.; Couvrat, M.; Cayron, C.; Lochet, N.; Chaffron, L. Incidence of mechanical alloying contamination on oxides and car‐ bides formation in ODS ferritic steels. J. Nucl. Mater. 2013, 442, S106–S111. 36. Chen, C.‐L. Microstructure and mechanical properties of AlCuNiFeCr high entropy alloy coatings by mechanical alloying. Surf. Coat. Technol. 2020, 386, 125443. 37. Bahrami, A.; Taheri, P. A Study on the Failure of AISI 304 Stainless Steel Tubes in a Gas Heater Unit. Metals 2019, 9, 969. abstract: Refractory high‐entropy alloy (RHEA) is one of the most promising materials for use in high‐temperature structural materials. In this study, the WMoNbTaV coatings on 304 stainless steel substrates has been prepared by mechanical alloying (MA). Effects of V addition and subsequent heat treatment on properties of the WMoNbTaV coatings were investigated. The results show that the RHEA coatings with nanocrystalline body‐centered cubic (BCC) solid‐solution phase were gen‐ erated by the mechanical alloying process. The presence of the V element promotes a uniform mi‐ crostructure and homogeneous distribution of composition in the RHEA coatings due to improving alloying efficiency, resulting in an increase of hardness. After the annealing treatment of the RHEA coatings, microstructure homogeneity was further enhanced; however, the high affinity of Ta for oxygen causes the formation of Ta‐rich oxides. Annealing also removes strain hardening generated by high‐energy ball milling and thus decreases the hardness of the RHEA coating and alters micro‐ structure evolution and mechanical properties. Keywords: refractory high‐entropy alloy; coating; mechanical alloying; heat treatment date: 2021-02 date_type: published publisher: MDPI official_url: https://itny.ac.id contact_email: library@sttnas.ac.id full_text_status: public publication: Coatings volume: 11 number: . pagerange: 1-13 refereed: TRUE issn: . referencetext: Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high‐entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. 2. Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. 3. Yeh, J.‐W.; Yeh, J.W. Refractory high‐entropy alloys (RHEAs) View project high‐entropy alloys View project recent progress in high‐entropy alloys. Ann. Chim. ‐Sci. Mater. 2006, 31, 633–648. 4. Li, P.; Wang, A.; Liu, C.T. A ductile high entropy alloy with attractive magnetic properties. J. Alloys Compd. 2017, 694, 55–60. 5. Zhao, Y.J.; Qiao, J.W.; Ma, S.G.; Gao, M.C.; Yang, H.J.; Chen, M.W.; Zhang, Y. A hexagonal close‐packed high‐entropy alloy: The effect of entropy. Mater. Des. 2016, 96, 10–15. 6. Mohanty, S.; Maity, T.N.; Mukhopadhyay, S.; Sarkar, S.; Gurao, N.P.; Bhowmick, S.; Biswas, K. Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties. Mater. Sci. Eng. A 2017, 679, 299–313. 7. Tang, Z.; Yuan, T.; Tsai, C.W.; Yeh, J.W.; Lundin, C.D.; Liaw, P.K. Fatigue behavior of a wrought Al0.5CoCrCuFeNi two‐phase high‐entropy alloy. Acta Mater. 2015, 99, 247–258, doi:10.1016/j.actamat.2015.07.004. 8. Holcomb, G.R.; Tylczak, J.; Carney, C. Oxidation of CoCrFeMnNi High Entropy Alloys. JOM 2015, 67, 2326–2339. 9. Xia, S.Q.; Yang, X.; Yang, T.F.; Liu, S.; Zhang, Y. Irradiation Resistance in Al xCoCrFeNi High Entropy Alloys. JOM 2015, 67, 2340–2344. 10. Raman, L.; Guruvidyathri, K.; Kumari, G.; Murty, S.V.S.N. Phase evolution of refractory high‐entropy alloy CrMoNbTiW dur‐ ing mechanical alloying and spark plasma sintering. J. Mater. Res. 2019, 34, 756–766. 11. Han, Z.D.; Chen, N.; Zhao, S.F.; Fan, L.W.; Yang, G.N.; Shao, Y.; Yao, K.F. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics 2017, 84, 153–157. 12. Kareer, A.; Waite, J.C.; Li, B.; Couet, A.; Armstrong, D.E.J.; Wilkinson, A.J. Low activation, refractory, high entropy alloys for nuclear applications. J. Nucl. Mater. 2019, 526, 151744. 13. Gorr, B.; Müller, F.; Azim, M.; Christ, H.J.; Müller, T.; Chen, H.; Kauffmann, A.; Heilmaier, M. High‐Temperature Oxidation Behavior of Refractory High‐Entropy Alloys: Effect of Alloy Composition. Oxid. Met. 2017, 88, 339–349. 14. Senkov, O.N.; Semiatin, S.L. Microstructure and properties of a refractory high‐entropy alloy after cold working. J. Alloys Compd. 2015, 649, 1110–1123. 15. Wu, S.J.; di Wang, X.; Lu, J.T.; Qu, R.T.; Zhang, Z.F. Room‐Temperature Mechanical Properties of V20Nb20Mo20Ta20W20 High‐ Entropy Alloy. Adv. Eng. Mater. 2018, 20, 1–8. 16. Senkov, O.N.; Wilks, G.B.; Scott, J.M.; Miracle, D.B. Mechanical properties of Nb 25Mo 25Ta 25W 25 and V 20Nb 20Mo 20Ta 20W 20 refractory high entropy alloys. Intermetallics 2011, 19, 698–706. 17. Cheng, J.B.; Liang, X.B.; Xu, B.S. Effect of Nb addition on the structure and mechanical behaviors of CoCrCuFeNi high‐entropy alloy coatings. Surf. Coat. Technol. 2014, 240, 184–190. 18. Hsueh, H.T.; Shen, W.J.; Tsai, M.H.; Yeh, J.W. Effect of nitrogen content and substrate bias on mechanical and corrosion prop‐ erties of high‐entropy films (AlCrSiTiZr) 100‐xN x. Surf. Coat. Technol. 2012, 206, 4106–4112. 19. Sheng, W.; Yang, X.; Wang, C.; Zhang, Y. Nano‐crystallization of high‐entropy amorphous NbTiAlSiWx Ny films prepared by magnetron sputtering. Entropy 2016, 18, 226. 20. Feng, X.; Zhang, J.; Xia, Z.; Fu, W.; Wu, K.; Liu, G.; Sun, J. Stable nanocrystalline NbMoTaW high entropy alloy thin films with excellent mechanical and electrical properties. Mater. Lett. 2018, 210, 84–87. 21. Hung, S.‐B.; Wang, C.‐J.; Chen, Y.‐Y.; Lee, J.‐W.; Li, C.‐L. Thermal and corrosion properties of V‐Nb‐Mo‐Ta‐W and V‐Nb‐Mo‐ Ta‐W‐Cr‐B high entropy alloy coatings. Surf. Coat. Technol. 2019, 375, 802–809. 22. Zhang, H.; Wu, W.; He, Y.; Li, M.; Guo, S. Formation of core‐shell structure in high entropy alloy coating by laser cladding. Appl. Surf. Sci. 2016, 363, 543–547. 23. Yue, T.M.; Xie, H.; Lin, X.; Yang, H.; Meng, G. Microstructure of laser re‐melted AlCoCrCuFeNi high entropy alloy coatings produced by plasma spraying. Entropy 2013, 15, 2833–2845. 24. Yao, C.Z.; Zhang, P.; Liu, M.; Li, G.R.; Ye, J.Q.; Liu, P.; Tong, Y.X. Electrochemical preparation and magnetic study of Bi‐Fe‐Co‐ Ni‐Mn high entropy alloy. Electrochim. Acta 2008, 53, 8359–8365. 25. Deng, X.; Zhang, G.; Wang, T.; Ren, S.; Bai, Z.; Cao, Q. Investigations on microstructure and wear resistance of Fe‐Mo alloy coating fabricated by plasma transferred arc cladding. Surf. Coat. Technol. 2018, 350, 480–487. 26. Li, Y.; Chen, C.; Deng, R.; Feng, X.; Shen, Y. Microstructure evolution of Cr coatings on Cu substrates prepared by mechanical alloying method. Powder Technol. 2014, 268, 165–172. 27. Ge, W.; Wu, B.; Wang, S.; Xu, S.; Shang, C.; Zhang, Z.; Wang, Y. Characterization and properties of CuZrAlTiNi high entropy alloy coating obtained by mechanical alloying and vacuum hot pressing sintering. Adv. Powder Technol. 2017, 28, 2556–2563. 28. Shang, C.; Axinte, E.; Ge, W.; Zhang, Z.; Wang, Y. High‐entropy alloy coatings with excellent mechanical, corrosion resistance and magnetic properties prepared by mechanical alloying and hot pressing sintering. Surf. Interfaces 2017, 9, 36–43. 29. Kang, B.; Lee, J.; Ryu, H.J.; Hong, S.H. Ultra‐high strength WNbMoTaV high‐entropy alloys with fine grain structure fabricated by powder metallurgical process. Mater. Sci. Eng. A 2018, 712, 616–624. 30. Suryanarayana, C.; Norton, M.G. X‐Ray Diffraction: A Practical Approach; Plenum Press: New York, NY, USA, 1998. 31. Ji, W.; Wang, W.; Wang, H.; Zhang, J.; Wang, Y.; Zhang, F.; Fu, Z. Alloying behavior and novel properties of CoCrFeNiMn high‐ entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics 2015, 56, 24–27. citation: Chun‐Liang, Chen and ., Sutrisna (2021) Influence of V and Heat Treatment on Characteristics of WMoNbTaV Refractory High‐Entropy Alloy Coatings by Mechanical Alloying. Coatings, 11 (.). pp. 1-13. ISSN . document_url: https://repository.itny.ac.id/id/eprint/3009/1/Influence%20of%20V%20and%20Heat%20Treatment%20on%20Characteristics%20of%20WMoNbTaV%20Refractory%20HEA%20coatings%20by%20MA.pdf