eprintid: 3008 rev_number: 6 eprint_status: archive userid: 15 dir: disk0/00/00/30/08 datestamp: 2021-09-09 05:25:14 lastmod: 2021-09-09 05:25:14 status_changed: 2021-09-09 05:25:14 type: article metadata_visibility: show creators_name: Chun-Liang Chen, . creators_name: Sutrisna, . creators_id: . creators_id: . title: Influence of alloying elements, in-situ dispersoids and fabrication on microstructure and properties of W-(Ta,V,Ti) ODS alloys ispublished: pub subjects: TJ keywords: Tungsten alloy Oxide dispersion strengthening Mechanical alloying Plasma facing materials abstract: In this study, the effect of Ta, V and Ti in W matrix on characteristics and synthesis of the model alloys were investigated. The secondary ball milling method and in-situ Y dispersed oxides were used to further improve material properties. The results showed that the model alloys adding with the V element could facilitate the grain refinement and microstructure homogeneity of the tungsten alloys. The (Ta,V)-rich and V-rich oxides were found in the microstructure and have been identified as the TaVO4 and V2O5 phases. The nano-scale of the in-situ oxide particle YTaO4 was observed and coherent with the tungsten matrix. Moreover, the secondary ball milling method was effective to refine the microstructure and to increase the relative density and mechanical properties. date: 2020-04 date_type: published publisher: Elsevier official_url: https://itny.ac.id contact_email: library@sttnas.ac.id full_text_status: public publication: Journal of Alloys and Compounds volume: 834 number: . pagerange: 1-9 refereed: TRUE issn: . referencetext: [1] P. Norajitra, L. V Boccaccini, E. Diegele, V. Filatov, A. Gervash, R. Ruprecht, V. Slobodtchouk, Development of a helium-cooled divertor concept : designrelated requirements on materials and fabrication technology 333 (2004) Fig. 12. The hardnessedisplacement curve of the four model alloys at different milling times. Fig. 13. A typical load-displacement curve of the WeTaeV_S and WeTaeVeP model alloys. 8 C.-L. Chen, Sutrisna / Journal of Alloys and Compounds 834 (2020) 154952 1594e1598, https://doi.org/10.1016/j.jnucmat.2004.04.137. [2] H. Bolt, V. Barabash, W. Krauss, J. Linke, R. Neu, S. Suzuki, N. Yoshida, A.U. Team, Materials for the plasma-facing components of fusion reactors, J. Nucl. Mater. 329e333 (2004) 66e73, https://doi.org/10.1016/ j.jnucmat.2004.04.005. [3] O.A. Waseem, H.J. Ryu, Tungsten-based composites for nuclear fusion applications, Nuclear Material Performance (2016), https://doi.org/10.5772/62434. [4] I. Smid, M. Akiba, G. Vieider, L. Plochl, Development of Tungsten Armor and € Bonding to Copper for Plasma-Interactive Components, vol. 263, 2000, pp. 160e172, https://doi.org/10.1016/S0022-3115(98)00358-4. [5] A.S. Argon, S.R. Maloof, Plastic deformation of tungsten single crystals at low temperatures, Acta Metall. 14 (1996) 1449e1462, https://doi.org/10.1016/ 0001-6160(66)90165-9. [6] M. Rose, A.G. Balogh, H. Hahn, Instability of irradiation induced defects in nanostructured materials, Nucl. Instrum. Methods Phys. Res. B 127 (1997) 119e122, https://doi.org/10.1016/S0168-583X(96)00863-4. [7] N. Nita, R. Schaeublin, M. Victoria, Impact of irradiation on the microstructure of nanocrystalline materials, J. Nucl. Mater. 333 (2004) 953e957, https:// doi.org/10.1016/j.jnucmat.2004.04.058. [8] C. Suryanarayana, E. Ivanov, V.V. Boldyrev, The science and technology of mechanical alloying, Mater. Sci. Eng. 304e306 (2001) 151e158, https:// doi.org/10.1016/S0921-5093(00)01465-9. [9] C. Suryanarayana, N. Al-Aqeeli, Mechanically alloyed nanocomposites, Prog. Mater. Sci. 58 (2013) 383e502, https://doi.org/10.1016/j.pmatsci.2012.10.001. [10] K. Arshad, M. Zhao, Y. Yuan, Y. Zhang, Z. Zhao, B. Wang, Z. Zhou, G. Lu, Effects of vanadium concentration on the densification, microstructures and mechanical properties of tungsten vanadium alloys, J. Nucl. Mater. 455 (2014) 96e100, https://doi.org/10.1016/j.jnucmat.2014.04.019. [11] Z. Wang, Y. Yuan, K. Arshad, J. Wang, Z. Zhou, J. Tang, G.H. Lu, Effects of tantalum concentration on the microstructures and mechanical properties of tungsten-tantalum alloys, Fusion Eng. Des. 125 (2017) 496e502, https:// doi.org/10.1016/j.fusengdes.2017.04.082. [12] K. Arshad, J. Wang, Y. Yuan, Y. Zhang, Z.J. Zhou, G.H. Lu, Development of tungsten-based materials by different sintering techniques, Int. J. Refract. Metals Hard Mater. 50 (2015) 253e257, https://doi.org/10.1016/ j.ijrmhm.2015.02.004. [13] Y. Kikuchi, I. Sakuma, D. Iwamoto, Y. Kitagawa, N. Fukumoto, M. Nagata, Y. Ueda, Surface cracking and melting of different tungsten grades under transient heat and particle loads in a magnetized coaxial plasma gun, J. Nucl. Mater. 438 (2013) 715e718. [14] M. Wirtz, J. Linke, G. Pintsuk, L. Singheiser, I. Uytdenhouwen, Comparison of the thermal shock performance of different tungsten grades and the influence of microstructure on the damage behaviour, Phys. Scripta T T145 (2011), https://doi.org/10.1088/0031-8949/2011/T145/014058. [15] C. Wan, S. Yu, X. Ju, W. Wang, Hydrogen trapping in helium-implanted W and W-Ta alloy : first-principles approach, J. Nucl. Mater. 508 (2018) 249e256, https://doi.org/10.1016/j.jnucmat.2018.05.050. [16] S. Wurster, N. Baluc, M. Battabyal, T. Crosby, J. Du, C. García-Rosales, A. Hasegawa, A. Hoffmann, A. Kimura, H. Kurishita, R.J. Kurtz, H. Li, S. Noh, J. Reiser, J. Riesch, M. Rieth, W. Setyawan, M. Walter, J.H. You, R. Pippan, Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials, J. Nucl. Mater. 442 (2013) 181e189, https://doi.org/10.1016/ j.jnucmat.2013.02.074. [17] C.L. Chen, Y. Zeng, Influence of Ti content on synthesis and characteristics of W-Ti ODS alloy, J. Nucl. Mater. 469 (2016) 1e8, https://doi.org/10.1016/ j.jnucmat.2015.11.018. [18] C.L. Chen, Y. Zeng, Synthesis and characteristics of W-Ti alloy dispersed with Y2Ti2O7 oxides, Int. J. Refract. Metals Hard Mater. 56 (2016) 104e109, https:// doi.org/10.1016/j.ijrmhm.2015.12.008. [19] C. Chen, Y. Zeng, The effect of La on the synthesis and properties of a W-Ti alloy, Fusion Eng. Des. 113 (2016) 30e36, https://doi.org/10.1016/ j.fusengdes.2016.10.002. [20] C. Chen, Y. Zeng, Effect of consolidation and oxide dispersoid addition on phase formation and mechanical properties of W-Ti ODS alloy, Int. J. Refract. Metals Hard Mater. 60 (2016) 11e16, https://doi.org/10.1016/ j.ijrmhm.2016.06.012. [21] C. Suryanarayana, M.G. Norton, X-Ray Diffraction: A Practical Approach, Plenum Press, New York, 1998. [22] C.L. Chen, C.L. Huang, Milling media and alloying effects on synthesis and characteristics of mechanically alloyed ODS heavy tungsten alloys, Int. J. Refract. Metals Hard Mater. 44 (2014) 19e26, https://doi.org/10.1016/ j.ijrmhm.2014.01.007. [23] P. Balog, D. Orosel, Z. Cancarevic, C. Sch, M. Jansen, V 2 O 5 phase diagram revisited at high pressures and high temperatures, J. Alloys Compd. 429 (2007) 87e98, https://doi.org/10.1016/j.jallcom.2006.04.042. [24] V.P. Filonenko, I.P. Zibrov, High-pressure phase transitions of M 2 O 5 (M ¼ V, Nb, Ta) and thermal stability of new polymorphs, Inorg. Mater. 37 (2001) 953e954. [25] C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci. 46 (2001) 1e184, https://doi.org/10.1016/S0079-6425(99)00010-9. [26] Y.V. Milman, A.A. Golubenko, S.N. Dub, Indentation size effect in nanohardness, Acta Mater. 59 (2011) 7480e7487, https://doi.org/10.1016/ j.actamat.2011.08.027. citation: Chun-Liang Chen, . and Sutrisna, . (2020) Influence of alloying elements, in-situ dispersoids and fabrication on microstructure and properties of W-(Ta,V,Ti) ODS alloys. Journal of Alloys and Compounds, 834 (.). pp. 1-9. ISSN . document_url: https://repository.itny.ac.id/id/eprint/3008/1/Influence%20of%20alloying%20elements%2C%20in-situ%20dispersoids%20and%20fabrication%20on%20microstructure%20and%20properties%20of%20W-%28Ta%2CV%2CTi%29ODS%20alloys_compressed.pdf