eprintid: 3005 rev_number: 8 eprint_status: archive userid: 15 dir: disk0/00/00/30/05 datestamp: 2021-09-08 02:12:46 lastmod: 2022-09-02 04:08:37 status_changed: 2021-09-08 02:12:46 type: article metadata_visibility: show creators_name: Kartikasari, Ratna creators_name: Sutrisna, . creators_name: Aziz, Ihwanul creators_id: . creators_id: . creators_id: . title: Corrosion Behavior of Plasma Nitrided SS316L Biomaterial ispublished: pub subjects: TJ keywords: Plasma nitriding, SS316L, Biomaterials, Corrosion resistance, Nitrogen, Fe4N abstract: Objective: This research aims to determine corrosion behavior of SS316L biomaterial metals after plasma nitriding process. Methods: The plasma nitriding process on the surface of SS316L was performed at 350oC, 400oC, 450oC, 500oC, 550oC and 1.8 mbar nitrogen gas pressure for 3 hours. The surface Nitrogen concentration level distribution from the surface was examined using Energy Dispersive X-ray Spectroscopy, the phases formed after nitriding process were determined using X-ray Diffraction. The corrosion resistance was investigated using three-electrode cell polarization method. Result: The results showed that the percentage of nitrogen concentration atoms on the surface of the SS316L after plasma nitriding process was in range of 7.61-21.73%, in which the highest number 21.73% occurred at 500oC. Metal nitride formed on the surface of SS316L for all temperature variations are Fe4N, CrN and β-Cr2N phases were formed after nitriding process. Optimum corrosion resistance (8.21 x 10-4 mm/yr) occurs at 350oC. Keywords: Plasma nitriding, SS316L, Biomaterials, Corrosion resistance, Nitrogen, Fe4N date: 2017-05 date_type: published publisher: Cross Mark official_url: https://itny.ac.id contact_email: library@sttnas.ac.id full_text_status: public publication: The Open Materials Science Journal volume: 11 number: . pagerange: 29-37 refereed: TRUE issn: . referencetext: [1] Liu C, Yang D, Lin G, Min Q. Corrosion resistance and hemo compatibility of multilayered Ti/TiN – coated surgical AISI 316L stainless steel. Mater Lett 2005; 59: 3813-9. [http://dx.doi.org/10.1016/j.matlet.2005.06.058] [2] Forysthe J. Biomaterials, Department of Materials Engineering. Vic 3804: Monash University 2007; p. 3804. [3] Bonfield W, Beheri JC, Doyle C, Bowman J, Abram J. Biomaterials and Biomechanics. Amsterdam: Elsevier 1984. [4] Hansen DC. The Electrochemical Society Interface. 2008; 31-4. [5] Mudali UK, Sridhar TM, Raj B. Corrosion of bio implants. Sadhana 2003; 28: 601-37. [http://dx.doi.org/10.1007/BF02706450] [6] Oliveira, Revista Brasileira de Aplicacoes de Vacuo. 2003; 22: 63-6. [7] Hermawan H, Ramdan D, Djuansjah JR. Metals for Biomedical Applications. Biomedical Engineering - From Theory to Applications 2011. [http://dx.doi.org/10.5772/19033] [8] Dee KC, Puleo DA, Tos RB. Biomedical engineering. New York: Wiley and sons 2002. [9] Ratner BO, Hoffmann AS, Schoen FJ, Lemons J, Eds. Biomaterials Science. San Diego, CA: Academic Press 1996. [http://dx.doi.org/10.1016/B978-012582460-6/50002-5] [10] Suh H. Recent Advance in Biomaterials Yonsei Medical J 1998; 39(2): 87-96. [http://dx.doi.org/10.3349/ymj.1998.39.2.87] [11] Alvarado J, Maldonado R, Marxuach J, Otero R. Biomechanics of hip and knee prostheses, aplication of engeneering mechanics in medicine. GED, University of Puerto Rico Mayaguez 2003. [12] Mudali UK, Sridhar TM, Raj B. Corrosion of bio implants. Sadhana 2003; 28: 601-37. [http://dx.doi.org/10.1007/BF02706450] [13] Larisch B, Brusky U, Spies H-J. Plasma nitriding of stainless steels at low temperatures. Surf Coat Tech 1999; 116-119: 205-11. [http://dx.doi.org/10.1016/S0257-8972(99)00084-5] [14] Habibovic P, Barrère F, Blitterswijk CA, Groot KD, Layrolle P. J Am Ceram Soc 2002; 83: 517. [15] Anandan C, William Grips, Ezhil Selvi V, Rajam KS. Effect of the temperature of plasma nitriding AISI 316L austenitic stainless steel, Revista Brasileira de Aplicacoes de Vacuo, vol. 22, pp. 63-66. 2007; 201: 7873-9. [16] Lipin ski, Bielin ski P, Okro D, Jakubowski jW, Klimek W, Jagielski JL. Biomedical aspects of ion bombardment of polyethylene. Vacuum 2009; 83: 200-3. [17] de Souza SD, Olzon-Dionysio M, Miola EJ, Paiva-Santos CO. Plasma nitriding of sintered AISI 316L at several temperatures. Surf Coat Tech 2004; 184: 176-81. [http://dx.doi.org/10.1016/j.surfcoat.2003.11.007] [18] Rodríguez RJ, Medrano A, García JA, Fuentes GG, Martínez R, Puertolas JA. Improvement of surface mechanical properties of polymers by helium ion implantation, Surface & Coatings technology, (2007), vol.201, pp.8146–814 citation: Kartikasari, Ratna and Sutrisna, . and Aziz, Ihwanul (2017) Corrosion Behavior of Plasma Nitrided SS316L Biomaterial. The Open Materials Science Journal, 11 (.). pp. 29-37. ISSN . document_url: https://repository.itny.ac.id/id/eprint/3005/1/Corrosion%20Behavior%20of%20Plasma%20Nitrided%20SS316L%20Biomaterial.pdf